
S C I E N C E P A S S I O N T E C H N O L O G Y

Institute of Information Security

Graz University of Technology

Lukas Giner

Microarchitectural Attacks and Defenses
for Isolated Domains

PhD Thesis

Assessors: Daniel Gruss, Yuval Yarom

July 2025

Abstract

Modern computer systems use code and data from many different and
mutually distrusting contexts. Consequently, they are isolated. However,
as long as underlying hardware components are shared, information leak-
age is still a threat. Side channels can turn minute differences in timing,
energy consumption, or other hardware behaviors into security breaches.
Among them, cache side channels have proven a persistent threat, leak-
ing everything from encryption keys to user behavior. When used with
transient execution vulnerabilities, they have even enabled attackers to
bypass memory isolation barriers completely.

In this thesis, we present attacks and defenses that contribute to the
understanding of how we can reinforce isolation boundaries for the mi-
croarchitecture. We demonstrate cache attacks on GPU caches launched
from the restrictive WebGPU JavaScript environment, showing that even
without access to memory addresses or timers, malicious websites can
use this generic interface to mount attacks on a range of GPUs. Our
cache attacks exploiting the AMD SEV-SNP encryption coherence pro-
tocol demonstrate that even low-resolution leakage can be turned into
highly accurate cache attacks. These two attacks illustrate that even when
some side channels are restricted, reduced attack surfaces can still lead to
powerful attacks. Spurred by ever-evolving cache attacks, we developed
two state-of-the-art secure cache designs that impede attacks at different
cache levels. Our LLC design, SassCache, employs a novel cryptographic
scheme that combines cache-line randomization with randomization-based
partitioning to overcome even occupancy attacks. For the L1 cache, we
devise a partition-based scheme that enforces strong domain isolation,
increases cache size, and maintains performance and compatibility. Lastly,
we develop a low-overhead software mitigation for LVI-NULL attacks on
SGX that stops data leakage before it can even reach a side channel like
the cache.

This thesis is split into two parts. The first part positions this work
within the context of the state of the art. The second part presents the
unmodified1 contributions to the field as they were peer-reviewed and
accepted at international security conferences.

1The content of the papers is unmodified and as submitted, though colors and layout
have been adapted to fit the thesis format.

iii

Acknowledgements

First, I want to thank Daniel Gruss for giving me the opportunity to
pursue this doctorate. It’s been a long road since I started my master’s
thesis with you, and I appreciate all the guidance you’ve given me to get
here.

Special thanks go to my work husbands Claudio Canella and Andreas
Kogler. The two of you shaped my time at the institute more than anyone
else, and I cannot imagine my time at the office without you there. From
when I first started as a student researcher until you finished your PhD,
Claudio, our daily rants and conversations improved my day, every day,
and I appreciate you introducing me to the PhD with your example. When
I moved into an office with you, Andi, the conversations turned slightly
sillier – but even with the occasional “brrt” I appreciated them, and your
friendship, just the same.

Thank you to Michael Schwarz and Moritz Lipp, the senior PhDs in the
group when I joined. Whenever I had a question, I knew that one of you
would have the answer and that I could always come to ask. The help you
provided in that time, and in all conversations since, was invaluable.

Thank you, Jonas Juffinger, for the time we shared during our travels
together. I had a blast with you and Andi, and those trips are some of
the most memorable times of my PhD. I also appreciate our short time
together in an office, where you stoically listened to my complaints (mostly
about latex).

Thank you, Martin Schwarzl, Stefan Gast, and Fabian Rauscher. You
each shared a significant part of this journey with me, and when I was
wandering through the hallways, unsure about what to try next, you
were always up for a productive chat. A special thanks also to my junior
colleagues Sudheendra Raghav Neela, Roland Czerny, Hannes Weissteiner,
and Carina Fiedler. You gave me a glimpse into your zoomer ways, and I
begrudgingly admit that your memes made me smile every day.

Thank you to Toon Purnal. You were a fantastic lead author for my first
paper during the PhD and I enjoyed working with you very much. Hanging
out with you was always a highlight at conferences, though I want to note
that I am still very suspicious about your varied language skills.

v

Thank you, Lukas Maar, for a fruitful collaboration and a fantastic adven-
ture in the Indonesian jungle. I look forward to our next trip together!

Thank you, Lena Heimberger, for the same shared adventure and the
numerous rants we shared in the kitchen.

Thank you to everyone else at the institute with whom I shared an office,
a conversation, or just a coffee over the years!

To my parents, thank you so much. You got me here through my kicking-
and-screaming resistance to homework as a kid and the mere reluctance
during my bachelor’s and master’s, and without your support none of it
would have been possible.

Thank you also to Yuval Yarom for assessing my thesis and providing a
valuable external view.

Big thanks to all my other co-authors, your contributions made this work
possible and I am grateful for them.

And finally, thank you to everyone I met along the way, from the hallway
track to conference dinners (shout-out to the CISPA crew!), you all made
it worth it.

vi

Contents

Contents vii

I Microarchitectural Attacks and Defenses for
Isolated Domains 1

1. Introduction and Contributions 3

1.1 Main Contributions . 5

1.2 Other Contributions . 9

2. Background 11

2.1 Virtual Memory and Segmentation 11

2.2 Caches . 12

2.3 Trusted Execution Environments 19

2.4 Transient Execution . 21

3. State of the Art 25

3.1 Secure Cache Designs . 25

3.2 Cache Attacks . 34

3.3 Defenses Against Meltdown-Type Attacks 37

4. Conclusion 41

References 43

II Publications 63

List of Publications 65

5. Cohere+Reload: Re-enabling High-Resolution Cache
Attacks on AMD SEV-SNP 67

vii

Contents

6. Generic and Automated Drive-by GPU Cache Attacks
from the Browser 97

7. Scatter and Split Securely: Defeating Cache Contention
and Occupancy Attacks 135

8. Fast and Efficient Secure L1 Caches for SMT 179

9. Repurposing Segmentation as a Practical LVI-NULL
Mitigation in SGX 211

viii

Part I

Microarchitectural
Attacks and Defenses
for Isolated Domains

1

1
Introduction and Contributions

In modern life, computers in many forms are ubiquitous. Whether on
personal computers, mobile devices, or cloud services, we expect our data,
privacy, and intellectual property to be protected. Therefore, isolation
techniques between different domains are at the heart of modern computing,
and threat models are based on their efficacy. When these barriers fail
or are circumvented, the threat models break down, and unexpected
data leakage can occur. Encrypted memory, for instance, quickly loses its
protective power when a transient execution attack can make a protected
application reveal its own information [171], or a side-channel attack can
infer what secrets a victim processed [131] without ever directly interacting
with them.

Moving from abstract notions of isolated applications to the real imple-
mentations of CPUs, we find that many components are shared between
different domains for performance and economic reasons. Whenever there
are shared components, there is the risk of information leakage; if not
directly, then via side channels [99]. Side-channel attacks are an indirect
way of inferring information about a system by observing its externally
visible behavior. This may be sound [49, 161], timing [26, 39, 92], elec-
tromagnetic emissions [48, 62, 106, 115, 175], power consumption [94, 95,
108], or other observable properties [90, 110, 181].

One of those shared components is the cache hierarchy. Virtual memory
provides an isolating barrier between the data of different processes. Cache
attacks, however, can reveal memory access patterns through this barrier.
Cache side channels were first demonstrated in the 1990s in the form of a
covert channel [64] and soon thereafter identified as a contributing factor
to timing attacks on cryptographic implementations like RSA [92]. These
and many following attacks [15, 21, 131, 133, 168] use the simple fact that
data in a cache is returned faster than data that has to be retrieved from
memory. This timing difference in a program’s run time can be measured

3

1 Introduction and Contributions

and can leak information about the program’s data. The Prime+Probe
attack [131, 134] improved on this cache attack’s resolution using the
specific hardware layout of caches to extract not just timing information,
but approximate information about which data was accessed. The Flush+
Reload attack [193] improved that accuracy to the level of a single cache
line. While research continued to improve upon cache attacks [25, 58, 86,
136], transient execution attacks [19, 27, 29, 31, 63, 93, 97, 109, 119, 122,
151, 153, 154, 162, 170, 179, 184] heightened the impact of this side channel
by making cache attacks an integral stepping stone to this devastating
new class of attacks.

Transient execution attacks like Meltdown [109] and Spectre [93] revealed
that while CPUs architecturally isolate domains correctly, the underlying
microarchitectural execution of instructions may not follow this isolation
as strictly. Using cache side channels to convert microarchitectural states
into architecturally observable states, these attacks demonstrated that
CPUs can be made to transiently cross permission boundaries and leak
information from one domain to another. Where Meltdown-type attacks,
i.e., attacks using a very similar mechanism to Meltdown [27, 29, 109,
122, 151, 153, 162, 170, 184], were clear flaws in the design of CPUs and
addressed in later hardware generations, Spectre-type attacks [19, 31,
63, 97, 119, 154, 179] are primarily based on intended behavior and are
therefore much harder to mitigate.

Given the danger of cache attacks, not just on their own but also as a
component of other attacks, it is unsurprising that much research has
gone into developing secure cache designs. Secure caches modify current
designs, which are optimized to be fast and efficient, to prevent cache
attacks or make them infeasible, ideally without excessively reducing speed
and efficiency. They try to isolate different security domains, mostly by
partitioning the cache into different sections or randomizing the locations
data can take in the cache. Research in this area has shown that both
methods have advantages and disadvantages. Works analyzing the security
of these designs [17, 20, 22, 30, 35, 47, 135, 139, 159] have repeatedly
challenged prior assumptions, contributing to a cycle of new designs, new
attacks targeting them, and improved follow-up designs.

Another effort towards protecting user data has been the introduction
of Trusted Execution Environments (TEEs) [8, 12, 73, 74] TEEs want
to eliminate the need for trust in the maker of an operating system or
the owner of cloud infrastructure by anchoring trust in the hardware
alone. They provide a secure environment for applications or entire virtual

4

1.1 Main Contributions

machines to run in, isolated from the rest of the system. This isolation
includes architectural protections, e.g., data encryption, against mali-
cious operating systems, hypervisors, or other attackers, but increasingly
also protections against side-channel attacks. Some attacks, like transient
execution attacks, however, proved far outside the scope of these protec-
tions, and a myriad of attacks have been demonstrated on TEEs over
the years [31, 46, 66, 104, 121, 151, 153, 170, 171, 172, 173, 174, 188]. In
the absence of fixes in hardware or microcode, software mitigations are
sometimes the only available remedy [117].

In this thesis, we investigate hardware isolation schemes from both sides: as
attackers and defenders. We examine AMD SEV-SNP and find that while
Flush+Reload is impossible, cache coherence creates a similar side channel.
Investigating GPUs, we find that the new WebGPU standard, even though
it includes measures against some side-channel attacks, still cannot prevent
attackers from conducting powerful GPU cache attacks from the browser.
To defend against cache attacks, we examine two different methods on
two different levels of the cache hierarchy. With our randomized cache
design for the last-level cache, we tackle not only contention attacks like
Prime+Probe but also the much harder-to-mitigate occupancy channel.
Our partitioned design for the L1 cache demonstrates that it is possible
to securely isolate domains while also increasing the effective cache size
without increasing the associativity and, thus, the energy consumption.
Finally, we build a software-only mitigation for a transient execution
vulnerability in the Intel TEE SGX. In the following, we discuss the main
contributions of this thesis as well as other contributions made in the
same time frame.

1.1 Main Contributions

In this section, I summarize the contributions of the first-author papers
written during my PhD. In these five papers, I covered novel cache attacks
on SEV and GPU workloads, two very different secure cache designs for
the first and last-level cache, as well as a software mitigation for a transient
execution vulnerability affecting SGX.

Cohere+Reload: Re-enabling High-Resolution Cache Attacks on
AMD SEV-SNP (Chapter 5). AMD Secure Encrypted Virtualization
(SEV) [8] is a technology to secure virtual machines by encrypting their
memory and isolating them from the host. As the host has no direct access

5

1 Introduction and Contributions

to the memory of the guest, the standard Flush+Reload attack does
not work. As AMD’s documentation notes [10], this encrypted memory
can also be read by the host in encrypted form, and on some machines,
coherence is maintained automatically. This raises the question of what
happens when both the host and guest read from encrypted memory, as
the physical address is the same for the purposes of the cache set and tag.
We found that the coherence mechanism not only evicts the ciphertext
when loading the plaintext and vice versa, but it also evicts up to 31
other cache lines located on the same 4KiB page. We investigated the
coherence effect in detail and discovered that despite the lower spatial
resolution compared to Flush+Reload, Cohere+Reload is a powerful attack
primitive. In particular, we discovered that because the eviction mechanism
is automatic and guaranteed, Cohere+Reload has an even higher temporal
resolution than Flush+Reload. This enabled us to do high-resolution
single trace attacks on RSA and AES in AMD SEV-SNP. The paper was
accepted at DIMVA 2025 and done in collaboration with Sudheendra
Raghav Neela and Daniel Gruss.

Generic and Automated Drive-by GPU Cache Attacks from the
Browser (Chapter 6). The WebGPU standard [177] specifies an interface
for interacting with a system’s GPU from the browser. As an attractive
target for attacks, the standard explicitly includes considerations for side-
channel attacks, including timing-based attacks [178]. We investigated the
effectiveness of these mitigations in preventing cache attacks. As prior
work demonstrated cache attacks on GPUs from native code and on
specific devices or vendors [3, 44, 45, 83, 128], we built WebGPU-based
cache attacks that stealthily execute in browsers. We demonstrated that
WebGPU compute shaders can be used to profile all cache sets in a matter
of minutes, record keystroke timings, and even break an AES encryption
running at the same time as our attacker. The paper was published at
AsiaCCS 2024 and won a Best Paper award. It was a collaboration with
Roland Czerny, Christoph Gruber, Fabian Rauscher, Daniel De Almeida
Braga, and Daniel Gruss.

Scatter and Split Securely: Defeating Cache Contention and
Occupancy Attacks (Chapter 7). Given the wide range of targets of
cache attacks and the conclusions from our work on “Systematic Anal-
ysis of Randomization-based Protected Cache Architectures” [135] (see
Section 1.2), we created a new secure cache design for the last-level
cache (LLC) which can resist the Prime+Prune+Probe eviction set cre-
ation method, contrary to randomized designs like ScatterCache [186],

6

1.1 Main Contributions

CEASER-S [139] and PhantomCache [163]. Based on the conclusion that
even advanced algorithms like Prime+Prune+Probe rely on re-accessing
the same address several times, we developed the design for SassCache. In
addition to the Index Generation Layer (IGL), which provides strong pro-
filing resistance like ScatterCache, we introduced a second cryptographic
layer, the Index Spacing Layer (ISL). This layer creates a unique subset of
the total cache capacity for each security domain, creating a new property
we call “hiding”. Each time an address is evicted from and reloaded into
the cache, it has a chance to land in a portion of the cache that is unobserv-
able by the attacker, i.e., it is hiding. Excepting systematic self-eviction,
once an address is hidden from attackers, it will remain so during their
profiling attempts. This also protects against more generic occupancy
attacks, as repeated measurements are unlikely to yield meaningful re-
sults. Our performance evaluation revealed that while SassCache is mostly
slightly slower than ScatterCache and CEASER-S, it performs better in
certain circumstances where partitioning is advantageous. The security
evaluation confirmed that profiling with Prime+Prune+Probe is no longer
feasible. The paper was published at the IEEE Symposium on Security
& Privacy 2023 and was a collaboration with Stefan Steinegger, Antoon
Purnal, Maria Eichlseder, Thomas Unterluggauer, Stefan Mangard, and
Daniel Gruss.

Fast and Efficient Secure L1 Caches for SMT (Chapter 8). Where
LLCs have some leeway to introduce additional delays, e.g., because of
cryptographic functions for randomization, most cache hits originate in L1
caches, and any delays, therefore, have a much larger impact on overall
system performance. For this reason, secure cache designs for the L1 cache
focus mostly on partitioning. Inspired by the increased cache size of the
Apple M1, we reexamined the idea of partitioning under the lens of a
new set of constraints: page size, energy consumption, performance, and
security. Where the M1 increased its page size to 16KiB, which in part
allows it to use a larger L1 cache, we maintained backward compatibility
for software by keeping the current page size of 4KiB while increasing
the L1 cache size without simply increasing the associativity and, thus,
energy. With SMTCache, we introduced a design that balances energy,
performance, and security by creating copies of the traditional L1 cache and
switching between them depending on the current security domain. With
this, we can double the effective capacity for Simultaneous Multithreading
(SMT) by providing a private L1 cache for each thread. As the individual
caches are the same size as current standard L1 caches, we can keep
the same associativity, and the energy consumption (assuming the same

7

1 Introduction and Contributions

total number of loads) increases only marginally. We found that while
switching between caches for different threads does not behave as if the
total cache was larger, SMTCache still performs similarly to caches with
the same total size, though at a much smaller energy cost. The paper
was accepted at ARES 2025 and was a collaboration with Roland Czerny,
Simon Lammer, Aaron Giner, Paul Gollob, Jonas Juffinger, and Daniel
Gruss.

Repurposing Segmentation as a Practical LVI-NULL Mitigation
in SGX (Chapter 9). After the first wave of transient execution vul-
nerabilities [27, 93, 109, 151, 153, 170, 171, 184], Intel began rolling out
CPUs with mitigations against the major vulnerabilities [68], such as Melt-
down, Foreshadow (L1TF), and Microarchitectural Data Sampling (MDS)
variants like Fallout [27], RIDL [151], and ZombieLoad [153]. The Intel
Comet Lake architecture includes mitigations for MDS, which also stop
the value injection of LVI [171]. However, the LVI variant LVI-NULL (or
“Load Value Injection: Zero Data”) remained unmitigated in silicon or
microcode. LVI-NULL is a special case of load value injection where only
‘0’ (but no other values) can be transiently injected into the victim data
flow. The investigation of Van Bulck et al. [171] and our preliminary
work suggested that while this was a less flexible attack, it still opened
many attack vectors on Intel Software Guard Extensions (SGX) enclaves
in particular. The available software mitigation in LLVM targeted LVI
as a whole [24] by fencing all loads and had enormous overheads. Even
an optimized version by Intel [69] that significantly reduced fences still
left much to be desired regarding performance. We also discovered that
prior proposed mitigations, such as modification of the null page [171],
would not be enough to protect against LVI-NULL. Unsure of when this
remaining attack surface might be fixed, we developed LVI-NULLify as
a software-only mitigation for SGX enclaves. Through modifications to
the LLVM compiler, SGX-SDK, and Intel Platform Software (PSW), we
offset all loads and stores in an enclave using the segmentation feature.
This allows us to create a “null page” for each enclave. More specifically,
transiently injecting null into any pointers would no longer point them at
the actual null page in the virtual memory space but at the beginning of
the enclave that is under the mitigation’s control. Our mitigation shows
modest performance overheads of less than 10%, compared to other miti-
gations that can reach 1 000% overhead or more. This work was published
at the USENIX Security Symposium 2022 and was a collaboration with
Andreas Kogler, Claudio Canella, Michael Schwarz, and Daniel Gruss.

8

1.2 Other Contributions

1.2 Other Contributions

In addition to the first-author papers, I contributed to several other papers
during my PhD, 3 of which were accepted at tier 1 conferences.

Following the publication of ScatterCache [186], Antoon Purnal discov-
ered an improved eviction set creation method he called Prime+Prune+
Probe [137]. Based on this, we created a Systematic Analysis of
Randomization-based Protected Cache Architectures [135] that
compares the security of several cache designs against Prime+Prune+
Probe and other attacks. Our analysis revealed that most current ran-
domized secure cache designs could be expressed and analyzed with a
common model, and that those we examined were less secure than their
authors had assumed. This work was published at the IEEE Symposium
on Security & Privacy 2021 and was a collaboration with Antoon Purnal,
Daniel Gruss, and Ingrid Verbauwhede.

After the publication of several software-based power attacks on commodity
CPUs [108, 110, 181] that targeted specific algorithms, we investigated the
feasibility of applying the methods of traditional correlation power attacks
to generalize this attack and leak data values directly from the memory
hierarchy. In Collide+Power [95], we demonstrated that this is indeed
possible. We showed that wherever data collides in the microarchitecture,
the power consumption of the CPU leaks recoverable information about
the difference between the two colliding pieces of data. This paper was
published at the USENIX Security Symposium 2023 and was joint work
with Andreas Kogler, Jonas Juffinger, Lukas Gerlach, Martin Schwarzl,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.

As prior work [28, 55, 65, 98, 107, 114, 165] has made clear, the Translation
Lookaside Buffer (TLB) is structurally very similar to data caches and,
therefore, susceptible to the same kinds of attacks. Consequently, any
kernel changes to memory allocation must be carefully considered, as any
differential treatment between different types of memory allocations is
reflected in the TLB in one way or another. In When Good Kernel
Defenses Go Bad [118], we examined a wide range of changes to the
Linux kernel aimed at increasing security. We found that three of the
twelve defenses that change page mapping open up a new attack surface in
the TLB. These changes allowed us to leak the position of kernel objects,
which can be used as an important stepping stone in kernel exploitation.

9

1 Introduction and Contributions

This work was published at the USENIX Security Symposium 2025 and
was a collaboration with Lukas Maar, Daniel Gruss, and Stefan Mangard.

10

2
Background

This chapter gives general background that applies to later chapters. As
this thesis mostly discusses x86-64 architectures from Intel and AMD,
many implementation details in the following reflect this.

2.1 Virtual Memory and Segmentation

In modern computer systems virtual memory fulfills two important roles.
Firstly, it enables domain isolation, e.g., between processes or virtual
machines, by abstracting applications’ address spaces away from the
underlying physical memory. Secondly, it provides the illusion of near
infinite and uninterrupted memory. This is supported by hardware through
paging and segmentation.

Paging maps virtual addresses that instructions operate on to physical
addresses with page granularity, where a page on x86-64 architectures
is typically 4KiB, 2MiB, or 1GiB large. This translation is achieved
through several levels of page tables. Figure 2.1 shows how 5-level paging
resolves an virtual address. In 4 or 5-level paging, virtual addresses may
be 48 bit or 57 bit long and are resolved from the highest to the lowest
level. Each level resolves 9 bit of the virtual address and points to the
location of the next level’s table. These page tables are set up by the
operating system and contain not only the locations of the next table
or the physical page location but also additional information like access,
write, and execute permissions. Every process has its own set of page
tables, with the CR3 register always pointing to the root of the current
top-level paging structure. CPUs accelerate this translation by caching
recently used translations in Translation Lookaside Buffers (TLBs). The
structure of TLBs is very similar to data caches, cf. Section 2.2.

11

2 Background

Byte Offset

011

Page

Physical
Memory

PT Index

1220

PTE

Page
Table

PD Index

2129

PDE

Page
Directory

PDP Index

3038

PDPE

Page Directory
Pointers

PML4 Index

3947

PML4E

Page Map
Level 4

PML5 Index

4856

PML5E

Page Map
Level 5

63

Virtual Address

CR3

Figure 2.1: Virtual memory with 5-level paging. The virtual address is split into
9 bit segments that index the different page table levels to find the
final physical memory address.

Segmentation is an older mechanism that is only used in limited ways
in x86-64 architectures. Segmentation partitions memory into different
segments for, e.g., data (DS), code (CS) or the stack (SS) based on a
segment’s base linear address, limit (size) and permissions. With segmen-
tation, programs operate on logical addresses, which are then translated
into linear addresses. When paging is used, these linear addresses are
the virtual addresses. Though technically still enabled on x86-64 in 64 bit
mode, all but two segments, FS and GS, have a forced base address of 0
and no limit. This effectively flattens all logical addresses into the same
virtual address space by default, unless they specifically use the FS or
GS registers. The FS and GS registers can still be used as offsets to
instructions or data loads that specify their use, e.g., for thread-local
storage [42].

2.2 Caches

Caches are small buffers of memory between the DRAM and the execution
core that accelerate accesses to often-used data based on the principle
of locality. Firstly, consecutive memory accesses are often close to each
other, and secondly, memory that was recently accessed is likely to be
accessed again in the near future. Caches store data in blocks, typically,

12

2.2 Caches

Offset

05

Set Index

616

Tag

174763

Physical Address

Tag Compare

Way Select

64B Data

Way

Hit?

Way 1

DataTag

Way 2

DataTag

· · ·

DataTag

Way 16

DataTag

Set 1

Set n

..

.

...

Set 2048

Figure 2.2: Cache addressing in a 16-way set-associative cache.

64B, called cache lines, and each cache line is identified by its tag. In the
following, we refer to the cache-line-sized and aligned data as blocks, while
cache lines are the actual storage units in the cache. In modern caches,
cache lines are grouped together in cache sets, forming a set-associative
cache. The size of a set is called its associativity, while the cache lines in
a set are called ways. Common associativities of caches are between 4 and
32 ways, depending on the use case of the cache.

Figure 2.2 shows how a block’s location in the cache is determined. In
standard designs, the block’s address is simply split into three parts: tag,
set index, and cache line offset. The set index determines the set that a
block may be located in. Within the set, a way corresponding to a block
may be found by comparing the tags. Addresses that map to the same set
are sometimes called congruent. If a requested block is in the cache, it is
referred to as a cache hit. When no match is found (a cache miss) and
the requested block is to be stored in the cache, a replacement policy (see
Section 2.2.1) decides which way the block should replace. In the example,
the set index starts after the offset with bit 6 and ends with bit 16, while
the tag consists of the upper part of the address. This implies a cache
with 2 048 sets and 64B cache line size. Together with the number of ways
nways = 16, we can infer that this cache is 2MiB in size.

Set-associative caches are a mixture of fully associative caches and direct-
mapped caches [123]. In direct-mapped caches, the address alone deter-

13

2 Background

mines the exact cache line its data may be stored it. For this reason, they
feature the fastest lookup of the three types. The downside is that two
congruent addresses will always evict each other. In fully associative caches
on the other hand, addresses may map to any line in the cache. This
makes theirs the most expensive lookup, as all tags have to be searched
to determine a cache hit or miss. Their advantage is improved cache
utilization and no fixed collisions between addresses, since the replacement
policy can choose to place new data anywhere in the cache. Set-associative
caches are a middle-ground that feature fast lookup while allowing many
congruent addresses in the cache before evicting them (see Section 2.2.3).

For physically indexed, physically tagged (PIPT) caches, the set index
and cache line tag are derived from the physical address. Each physical
address is associated with exactly one set, in which it can be stored in
any one way. The advantage PIPT caches is therefore that the set index
and tag together uniquely identify a location in memory, which greatly
simplifies their access logic. A virtually indexed, physically tagged (VIPT)
or virtually indexed, virtually tagged (VIVT) cache on the other hand
base either the set lookup (VIPT) or the set lookup and tag comparison
(VIVT) on the virtual address. This has the advantage that no TLB query
is necessary and responses can be faster and require less energy. On the
other hand, these designs introduce a new set of problems: synonyms
and homonyms. Synonyms are different virtual addresses pointing to the
same physical address, while homonyms share same virtual address but
refer to different physical addresses. VIVT caches are rarely employed
because these problems require tradeoffs (such as flushing the entire cache
on context switches) or more complex handling (e.g., page coloring [23]).
In small caches, the VIPT scheme may be employed without downsides if
only the bits within a page (which are the same as the physical bits) are
used as a set index.

2.2.1 Replacement Policies

When a new line enters a cache and no way in its set is marked as invalid,
a way must be evicted to make space for the incoming data block. The
replacement policy determines which way is the next eviction candidate.
Most replacement policies are derivations of Least Recently Used (LRU).
In ideal LRU, all ways within a set store their “ages” in addition to the
tag and data. When a cache line is accessed, its age is set to 0, and the
age of all ways whose age was previously lower than the accessed one

14

2.2 Caches

are increase by 1. As the policy name implies, the eviction candidate
is then the way with the highest age, i.e., the least recently used cache
line in the set. This achieves good performance for programs with high
temporal locality, i.e., programs that often reaccess the memory locations.
In practice, using ideal LRU is often too costly in hardware (e.g., storing
4 bit per cache line for a 16-way cache and modifying them all) or does
not have all the desired properties. In L1 caches (see Section 2.2.2), a
pseudo-LRU variant called tree-PLRU is often used [1, 2] because of
its efficiency. Instead of log(n) bits per way it only uses n − 1 bits in
total. Despite this reduction, tree-PLRU still approximates LRU for many
access patterns. L2 or L3 caches use more complex replacement algorithms
than PLRU [1], like Quad-Age LRU (QLRU) [80], which stores a line’s
approximate age in only 2 bit, or policies similar to a Bimodal Insertion
Policy (BIP) or Dynamic Insertion Policy (DIP) [140], like BRRIP or
DRRIP [81]. These policies try to mitigate misses caused by streaming
large amounts of single-use data by inserting new data in (or close to)
the LRU position. Depending on the exact policy, this can cause a newly
inserted line to be evicted by another new line either right away or very
soon, unless it is accessed in the meantime. In this way, an access pattern
generating large amounts of accesses will only occupy a small part of each
cache set, while older but reused cache lines can persist. On the other end
of the spectrum is the simple random replacement policy. As the name
suggests, it simply inserts new lines in a random position. Its performance
is generally worse than LRU.

2.2.2 Cache Hierarchy, Inclusivity and Coherence

Modern CPUs employ a hierarchy of caches, with a small and fast level 1
(L1) cache nearest to the core and a large and comparatively slow last-level
cache (LLC), usually the L3 cache, furthest from the core (Figure 2.3).
Latencies for the different levels are typically 3 cycles to 5 cycles for L1,
10 cycles to 14 cycles for L2, and wildly varying (26 cycles to 70 cycles)
for L3 caches [71]. The size of a VIPT L1 cache is determined by the
page size, which limits the number of available bits for the cache line size
and set index, and the number of ways, which is limited by energy and
performance constraints [126, 164]. Common L1 cache sizes range from
32KiB to 128KiB [71]. Additionally, there is usually an L1 instruction
cache (L1I) that exclusively stores data loaded as instructions in addition
to the general L1 data cache (L1D). L2 caches and up are not constrained

15

2 Background

L1I L1D

L2

LLC Slice 1

Core 1

L1I L1D

L2

LLC Slice 2

Core 2

L1I L1D

L2

LLC Slice 3

Core 3

L1I L1D

L2

LLC Slice 4

Core 4

PCIe,
Memory
Controller,

...

Figure 2.3: An example cache hierarchy as might be found in some Intel archi-
tectures. The first and second level caches are private to each of the
four cores, while the shared last-level cache is split into slices. The
depicted slices are connected to the cores and each other by a ring
bus, and are typically physically close to one of the cores.

by the page size and feature sizes from 256KiB per-core L2 cache to
over 1GiB in the case of L3 caches that can be distributed over many
cores [7, 71]. For practical purposes, LLCs are often partitioned into cache
slices, where each slice functions as its own autonomous cache (Figure 2.3).
Though there are often as many slices as there are physical (or logical)
cores, the slice index of an address is independent of the core an access
is performed on. This slice index is determined by a slice addressing
function (or hash function) that is often a linear combination of exclusive-
or operations on physical address bits [50, 65, 67, 79, 113, 120, 125, 141,
156, 192, 194].

Within a core’s cache hierarchy, caches can be inclusive, non-inclusive
(sometimes called non-inclusive, non-exclusive, NINE) or exclusive w.r.t.
each other [127]. A larger cache that is inclusive of a smaller cache guar-
antees that any cache line that is stored in the smaller cache can also be
found in the larger cache. Conversely, this means that an eviction from
the larger cache must also trigger and eviction from the smaller cache.
Exclusive caches, as the name implies, ensure that none of their cache lines
are duplicated in caches they are exclusive of. Non-inclusive caches give no
such guarantees and are implemented with different strategies as to when
lines will be filled or evicted. While inclusive last-level caches are common,

16

2.2 Caches

non-inclusive LLCs with inclusive L2 caches are increasingly popular with
a growing number of cores and increasingly large L2 caches [76].

In CPUs with more than one core, caches below the LLC are private to
each core, while the LLC itself is shared accross all (or at least several [6])
cores. With more than one cache, it becomes necessary to keep all cached
data coherent. This means ensuring that an address is never accessible
with different data through different caches at the same time. A cache
coherence protocol addresses this. It specifies states that a cache block may
be in, and governs how blocks can transition from one state to another. A
simple protocol is MSI, where blocks may be marked as modified, shared,
or invalid. For example, when a cache controller requests to modify a
cache block that it does not currently have, all other copies need to be
invalidated to ensure consistency [127].

There are two main implementations of coherence protocols, snooping and
directory coherence protocols. Snooping is a collaborative protocol where
each cache controller broadcasts coherence requests that are observed by
all cache controllers. As this type of coherence protocol does not scale well
with an increasing number of cache controllers (e.g., cores), directories are
more popular in modern CPUs. A directory coherence protocol is based
on a central directory structure that maintains coherence information
for all blocks in the cache hierarchy. Here, coherence requests only need
to be sent to the directory, instead of broadcasting them. The directory
may then forward subsequent updates only to the cache controllers that
hold the affected blocks. In designs with an inclusive LLC, this scheme is
greatly simplified, as the cache directory contains the same blocks as the
LLC.

2.2.3 Side-Channel Attacks on Caches

Cache attacks are a class of side-channel attacks and as such do not
leak data from the cache, but reveal meta information, such as access
patterns or occupancy levels. Since a program’s memory accesses are
determined by its control- and data-flow, sensitive information can often
be recovered from observing the cache. We can broadly split cache attacks
into five categories: Occupancy Attacks, Evict+Time attacks, contention
attacks (Prime+Probe), shared-memory attacks (Flush+Reload), and
internal-collision attacks.

17

2 Background

Occupancy attacks measure the overall usage of the cache by filling it
either totally or partly and measuring the share of attacker controlled lines
that were evicted by a victim program’s execution. Measuring eviction is as
simple as timing a load, e.g., with the rdtsc instruction, and comparing
it to a threshold above which it was likely served from DRAM. The
information gained is limited, but they can still be used for website
fingerprinting [158] or even attacks on cryptography implementations [30].
Internal-collision attacks do not interact with the victim directly,
but observe their execution time based on their own cache usage. Some
versions of this attack may clear the entire cache before an attack or rely
on consistent but non-attacker-controlled outside behavior to cause caches
evictions. This type of attack potentially yields less granular information
than later attacks, but has been used to great effect nonetheless [15, 21,
133, 168]. Closely related are Evict+Time [131] attacks. They use the
layout of set-associative caches to target specific sets for eviction and then
measure a victim algorithm’s execution time.

Contention-based attacks (sometimes “interference attacks”) are much
more accurate improvement over Evict+Time attacks, with the Prime+
Probe [131, 134] attack being the most prominent example. These attacks
manipulate the state of one or more targeted cache sets and later observe
the victim’s accesses in them directly or indirectly [16]. Depending on the
targeted cache level, this can leak around 11 bit of address information
(for a cache with 2048 sets, bits 6-16). Prime+Probe first primes a cache
set by filling it with attacker controlled lines and then probes those
same lines again to see if any have been evicted in the meantime. Later
variants of Prime+Probe extend it with knowledge of the replacement
policy or adapt it to specialized cache designs (see Section 3.2). Set-based
attacks that target the LLC require either knowledge of the slice function
(see Section 2.2) to construct eviction sets, or a general algorithm for
eviction-set construction [113, 130, 139, 176]. On non-inclusive caches (cf.
Section 2.2.2), attacks on the cache directory instead of the LLC have
been proposed [192].

The first and most well-known exemplar of shared-memory attacks
is Flush+Reload [193]. Instead of indirectly measuring a target cache
line’s state via its set contention, these attacks target shared memory
to directly cache lines of interest. In Flush+Reload, the targeted line is
directly evicted from the cache with the clflush instruction and later
measured (reloaded) to determine if the victim accessed it. While this
has the additional requirement of shared memory with the victim, the

18

2.3 Trusted Execution Environments

benefit is cache-line accuracy and significantly reduced noise. Well-known
variants if Flush+Reload are Evict+Reload [59] and Flush+Flush [58].
Flush+Flush uses the different duration of the clflush instruction itself
to determine whether an address was cached, while Evict+Reload replaces
the flush instruction with a set eviction like Prime+Probe for devices or
contexts (e.g., JavaScript) that do not support clflush.

2.3 Trusted Execution Environments

A Trusted Execution Environment (TEE) is a hardware-supported mode
of execution that provides code running on trusted hardware that is
managed by untrusted third parties with certain security guarantees,
such as code and data confidentiality, and integrity. These properties are
intended to hold even in the face of a malicious hardware owner.Earlier
examples of TEEs are Intel Software Guard Extensions (SGX) [73] or ARM
TrustZone [12] which target mainly private devices. These extensions allow
specialized software to execute security-critical code in the TEE enclave,
while most code runs outside with no access to an enclave’s memory or
registers.

Recent TEEs, such as Intel Trust Domain Extensions (TDX) [74], AMD
Secure Encrypted Virtualization (SEV) [8, 9] and ARM Confidential Com-
pute Architecture (CCA) [11] have adopted a new paradigm of securing
an entire virtual machine in an untrusted cloud environment [33], creating
Confidential Virtual Machines (CVMs).

2.3.1 Intel SGX

Intel’s Software Guard Extensions (SGX) provide confidentiality and
integrity through hardware mechanisms under the assumption that only
the hardware is trusted [34, 73] and an attacker may have control over the
host operating system. The code and data that comprises the secure unit
of memory is called an enclave. Confidentiality and integrity are enforced
by several mechanisms, the first among which is hardware encryption
of all enclave memory. This memory is allocated and managed by the
operating system, but still protected from being read or written to by the
OS. To prevent the operating system from simply remapping arbitrary
pages into the enclave, SGX keeps a separate record of its expected pages
and their properties in its enclave page cache map (EPCM). Building on

19

2 Background

this protected memory area are a limited number of well-defined entry
and exit points for the enclave which automatically save and restore the
confidential state of the enclave to its encrypted memory region, even if
interrupted by a malicious operating system. Enclaves are executed in the
virtual memory space of a host application. This means that they can read
and write to data in the normal user space application, though enclaves
cannot execute code outside their allocated enclave pages.

2.3.2 AMD SEV

AMD Secure Encrypted Virtualization (SEV) was introduced in 2016
together with Secure Memory Encryption (SME) in the Zen microarchi-
tecture [85]. While SME simply provides encryption of selected pages in
memory, SEV builds on this mechanism to provide a Confidential Virtual
Machine solution. Each CVM is assigned a unique encryption key that is
used to transparently encrypt and decrypt any data between the CPU and
DRAM. This initial version of AMD SEV only provided confidentiality
and was quickly shown to be vulnerable to several attacks [43, 61, 124,
185, 187]. By now, SEV is in its third iteration with SEV-SNP [8, 9].
SEV-ES adds encrypted state (ES) to the SEV design, which encrypts
all register contents when the CVM is not paused. SEV-SNP adds Se-
cure Nested Paging (SNP), which, among other things, protects against
memory replay and remapping attacks, thereby adding integrity. Prior to
SNP, the hypervisor had full control over the pages, which meant that
even if they were encrypted, the hypervisor could overwrite a page with
old encrypted data, or map other pages into the guest’s address space.
With SNP, the hypervisor can no longer write to guest memory, and the
paging structure is secured by a Reverse Map Table (RMP). The RMP is
a hardware-protected table in memory that tracks the owner of each page,
and SEV guests need to validate each page when it is assigned to them.

On some CPUs, SME and SEV provide “coherency across encryption
domains” [10], which ensures that any reads from any encryption domain
always return the most recent value, even if it was not written back to
memory yet.

20

2.4 Transient Execution

2.4 Transient Execution

Transient execution is an effect that arises from the difference between the
Instruction Set Architecture (ISA) and the microarchitecture. Where the
ISA defines how a CPU that implements it behaves from the perspective
of the programmer, the microarchitecture as an instance that implements
the ISA may do so in a variety of ways.

Out-of-Order Execution. Diverging from the simple architecture model
of in-order execution, where assembly instructions are executed one after
another, modern out-of-order processors may execute instructions (or parts
thereof) in parallel or in a different order entirely if their dependencies are
met. The only guarantee is that at instruction retirement (or commit), the
effects of the instructions become architecturally visible in program order.
This is possible because a CPU has multiple execution units dedicated to
different operations. Out-of-order operation enables the CPU to schedule
operations that do not depend on each other on as many execution units
as possible, thereby drastically improving throughput and latency.

Speculative Execution. While executing a linear instruction stream out
of order can already speed up execution significantly, the CPU may still
sometimes stall when it encounters a dependency on an earlier instruction.
The most common example of this is a branch that depends on a load.
Until the condition for the branch is resolved, it is unknown where the
instruction stream will continue. Modern CPUs employ predictors to avoid
stalling in these situations. In the simplest form, a “predictor” may simply
guess a branch target and continue execution there. In practice, predictors
make an initial guess when no information is available and a guess informed
by the predictors history otherwise. When a misprediction occurs, the
wrongly executed (or scheduled) instructions are “squashed”, i.e., removed
from the scheduler and all other microarchitectural elements they may
currently be processed in, and their effects are undone. The totality of
situations where the CPU executes instructions based on guesses is called
speculative execution.

Transient Execution. Transient execution (or transient instructions) as
a term was coined in the Spectre [93] and Meltdown [109] papers. It refers
to the natural consequences of processors that execute instructions out of
order and speculatively; instructions that were already executed but need
to be discarded before retirement. This may be because of a misprediction,
a fault in a prior instruction, or any other microarchitectural event (e.g.,

21

2 Background

an interrupt). While these transient instruction are not allowed to leave
any trace in the architectural state of the machine, they can influence
microarchitectural state. This can be exploited for transient execution
attacks, which we discuss in Section 2.4.1.

2.4.1 Meltdown-Type Transient Execution Attacks

Transient execution attacks [29] are a class of attacks that leak information
from within transient execution through the microarchitectural state into
the architectural state of the attacker. While the transient instructions are
squashed and do not affect the architectural state, some microarchitectural
elements are still modified by their execution. This microarchitectural
state can later be recovered via a side channel. An often-used example of
such an element is the cache. Once an address has been loaded into the
cache (and another evicted), the prior state cannot simply be restored
by the squashing of the transient instructions that caused the change.
During a transient window (a group of instructions that are executed
but squashed together for the same reason), an attacker can intentionally
encode sensitive information into the cache by accessing a certain offset
in memory, thereby bringing this address into the cache. Other elements,
such as the AVX engine [154] have also been shown to be exploitable for
data extraction.

Meltdown-type attacks [29] are a subclass of transient execution at-
tacks that exploit deferred permission handling or faulty behaviors during
transient execution to leak otherwise inaccessible data. In the case of
Meltdown [109], a user space attacker can transiently access kernel mem-
ory, as affected CPUs defer the permission check until retirement of the
offending instruction. Until then, the data is still served from the L1 cache
(if present) and can be used by later instructions. If the transient window
is long enough, i.e., the oldest instruction that has yet to retire takes
long enough to do so, the value of an illegal access can be encoded into a
cache access and later recovered. Other variants of Meltdown exploit data
forwarding from different buffers or through different permission checks,
leaking not only from the L1D [109, 170] but also the line-fill buffer [109,
151, 153], store buffers [27], load ports [151], the FPU register file [162],
and SIMD register buffers [122].

Load Value Injection [77, 171] (LVI) inverts Meltdown by transiently
injecting data into the victim. An attacker places data into a Meltdown-

22

2.4 Transient Execution

vulnerable microarchitectural buffer and then creates the conditions (e.g.,
a fault) for the victim to ‘leak’ this data into its own control or data
flow. Data can be injected into any load in the victim, even implicit loads
in instructions like ret. With the right gadget in place, the victim can
be made to leak its own sensitive information into a microarchitectural
element, e.g., the cache state. This aspect is similar to Spectre [93], which
also depends on victim gadgets [171].

We discuss defenses against Meltdown-type attacks in Section 3.3.

23

3
State of the Art

This chapter gives an overview of the state of the art in the fields relevant
to the publications in this thesis. We discuss secure cache designs in
Section 3.1 and analyses on them in Section 3.1.4. Section 3.2 describes
the cache attacks that motivate secure cache designs and finally Section 3.3
reviews defenses against Meltdown-type attacks.

3.1 Secure Cache Designs

Secure caches aim to address the problem of cache attacks in hardware.
Over the years since publication of the first thoughts on secure caches [132],
the understanding of cache attacks and secure cache designs have both
evolved significantly, and the multitude of designs published since the first
Prime+Probe cache attacks (see Section 2.2.3) reflect this. In this section,
we overview two decades of secure cache designs and how our research
contributed. We give a brief overview of a number of designs, how they
relate to each other and what types of cache attacks they mitigate.

Though partitioned or skewed caches, for increased performance in specific
applications, have a long history in academia (e.g., skewed caches first
proposed in 1993 [157] and dynamic cache splitting in 1995 [84]), we
limit our overview to cache designs that focus on security against attacks
described in Section 2.2.3. One of the earliest secure cache designs is a
partitioned cache design by Page [132]. He offered an exploration of what a
cache partitioned by domain identifiers might look like, and even suggested
an element of randomization with a mask to the address that changes
the mapping of addresses to cache lines. Shortly thereafter, Wang and
Lee [183] proposed both the Random Permutation Cache (RPcache) and
Partition-Locked Cache(PLcache) in the same publication, embodying in

25

3 State of the Art

a single paper the start of a field of research that is largely split between
randomization- and partition-based designs.

3.1.1 Partition-based Secure Caches

Partition-based designs split the cache between different security domains,
such that contention-based attacks are ideally completely ruled out. The
simplest example of such a design is static partitioning. To support n
security domains, the cache is split into n partitions. The drawback of such
designs is a performance penalty for many workloads, as the available cache
for each application effectively shrinks. An alternative are dynamically
partitioned caches, where partitioning is done in the moment according to
particular performance and security needs.

The most common strategy for partitioning is to split the cache within
the sets, though there are many different approaches, such as modifying
the cache line replacement policy [150, 183]. PLcache [183] employs
new instructions for dynamic, on-demand locking of single cache lines
or memory regions for security domains. These lines are locked into the
cache when they are first loaded and the replacement policy may not
select them until they are unlocked. Denial of service through locking too
much of the cache is prevented by the operating system, which oversees all
locking and unlocking. Vantage [150] is a design that allows for dynamic
creation, removal and resizing of partitions with cache line granularity.
It uses a modified LRU replacement policy to insert lines into standard
sets, which allows it to keep the associativity of the cache. The size of a
partition is not statically assigned, but instead controlled by monitoring of
replacement rates and allowing occasional spill-over into a reserved cache
region. The number of partitions is limited by the number of tag bits,
which are used to identify the partitions. The NoMo (non-monopolizeable)
cache [41] is a way-split design that proposes to reserve some ways in each
set in the L1 per SMT thread. Reserved ways cannot be evicted by the
other thread, but are still observable in the case of shared memory. When
the two reserved partitions do not fill the entire set, the remaining ways
are shared between the threads. CATalyst [111] is a similarly way-split
design, however one that builds on top of Intel’s existing Cache Allocation
Technology (CAT) [70] for the LLC. CAT allows a hypervisor to assign
different levels of classes of service, which can be given exclusive write
access to parts of each cache set. CATalyst uses this in a hybrid software-
hardware-managed scheme where VMs can request a certain number of

26

3.1 Secure Cache Designs

secure pages that are the guaranteed to always reside in the LLC and be
unevictable. These pages are not shareable between VMs, and their total
number is limited not by the number of service classes, but by the portion
of the LLC dedicated to the secure partition. Based on extending Verilog
with information flow semantics, Zhang et al. present SecVerilog [196]
and evaluate a cache where sets are statically partitioned into two different
security levels. The design ensures that high security operations do not
interfere with low-security cache state, and low security operations cannot
generate hits from lines that are in the high-security partition. Instead,
low-security operations simulate a miss, and the cache line is moved from
the high security partition to the low-security partition. This creates a
one-way flow of side-channel information. SecDCP [180] builds on this
asymmetric information-flow model and extends it with more security
levels and dynamic partitioning according to runtime demand of the low-
security application. DAWG [91] (Dynamically Allocated Way Guard)
partitions sets into domains with per-domain bit masks, allowing for
replacement only in the same domain and hits only in a defined set of
ways. This also enables duplicate read-only cache lines, which protects
against shared memory attacks. HybCache [37] uses a hybrid design that
provides a standard set-associative cache for most applications, but allows
for a fully-associative subcache cache for security-critical applications. The
subcache is made up of a fixed amount of reserved ways in each standard
set. Isolated domains then only operate within this subcache, which does
not leak address location information because it is fully-associative with
random replacement. The fully-associative nature however also increases
power overheads, making it impractical for large caches.

More recent publications [38, 145] argue that way-based partitioning is
often not fine-grained enough, does not scale well with security domains
or large caches, or does not support shared memory. Instead, these designs
allocate entire sets to domains instead of ways. Saileshwar et al. propose
Bespoke Cache Enclaves [145], which allocates dynamic LLC partitions
of multiple clusters of sets which are of a fixed size, e.g., 64KiB. A
configurable cache indexing function is used to map a domains addresses
to their own private cache enclave. Similarly, ChunkedCache [38] reserves
chunks of full sets for TEEs, which are then fully isolated from each other.
Domains can configure the size of their chunks and specific memory regions
they apply to. Composable Cachelets [167] is another LLC design that
provides dynamic and fine-grained cache isolation for enclaves. Contrary
to the previous designs, cache lets may partition sets and ways, such that
enclave memory is remapped to certain sets that belong to one of its

27

3 State of the Art

assigned cachelets. Inside the set, a modified replacement policy ensures
that an access can only evict ways belonging to that enclave. Enclaves
can be assigned a variable number of cachelets, and non-enclave programs
may use all ways that are not assigned to cachelets. The Untangle [199]
framework makes the case that many dynamic partitioning designs still
leak information through their resizing decisions. The framework is then
applied to present a new set-partitioned LLC design with 9 pre-defined
partition sizes. Partitions are resized based on active monitoring of LLC
utilization in the recently retired instructions.

In Jumanji [155], Schwedock and Beckmann take a different approach
to partitioning. Their proposal, based on the earlier partitioned design
Jigsaw [14], splits the LLC by cache banks that are assigned to individual
VMs, creating an isolating barrier between them. The banks are allocated
such that they are closest to their respective assignees, which improves
latencies over the design’s predecessor.

With SMTCache (Chapter 8), our contribution to the state of the art is
an approach that considers different constraints for L1 caches in particular.
We increased the overall size of the cache while keeping latency, power
consumption and page sizes the same as standard VIPT caches, at the cost
of increase chip area. Our design does not modify the functions of current
L1 caches, but instead uses two of them, so-called slices, in parallel within
a new overarching structure. SMTCache is specifically tailored to the SMT
use case, where two concurrent workloads can make use of an effectively
doubled cache capacity while being isolated from each other. An entire
slice is assigned to a workload at a time, and the slice is flushed when
switching between security domains. As set sizes and cache addressing are
not modified, hits are served with the same latency as standard caches.

3.1.2 Randomization-based Secure Caches

Designs based on randomization either seek to make the link between an
address and its location in the cache infeasible to find, or at least hard
enough that an attacker will be thwarted by an eventual rekeying that
changes the mapping. They usually offer probabilistic security, but may
have higher hit rates or be more flexible than partitioned designs that
reduce the available cache size. They inherently try to prevent contention-
based attacks that may leak address information, while typically leaving
the cache occupancy channel open. Randomization-based designs are

28

3.1 Secure Cache Designs

Cache Design Year Level Type Predecessor
PLcache [183] 2007 any P
RPcache [183] 2007 any R
NewCache [182] 2008 L1 R RPCache
Vantage [150] 2011 LLC P
NoMo [41] 2012 L1* P
Random Fill Cache [112] 2014 L1 R
SecVerilog Cache [196] 2015 L1 P
CATalyst [111] 2016 LLC P
SHARP [191] 2017 LLC O
RIC [87] 2017 LLC O
CEASER [138] 2018 LLC R
DAWG [91] 2018 LLC* P
ScatterCache [186] 2019 LLC R
CEASER-S [139] 2019 LLC R CEASER
PhantomCache [163] 2020 LLC R
HybCache [37] 2020 L1,L2 P
Jumanji [155] 2020 LLC P Jigsaw
SecDCP [180] 2020 LLC P SecVerilog
FTM [142] 2020 LLC O
Mirage [147] 2021 LLC R
TimeCache [129] 2021 any O FTM
BCE [145] 2021 LLC P
Comp. Cachelets [167] 2022 LLC P
Chunked-Cache [38] 2022 LLC P
Chameleon Cache [169] 2022 LLC P CEASER-S, ScatterCache
ClepsydraCache [166] 2023 LLC* R
SassCache [52] 2023 LLC R+P ScatterCache
Recast [198] 2024 LLC R
Maya Cache [18] 2024 LLC R Mirage
Song et al. [160] 2024 LLC R CEASER
SMTCache [51] 2025 L1 P

Table 3.1: A selection of secure cache designs since the publication of the Prime+
Probe attack. The type is ‘R’andomized, ‘P’artitioned, or ‘O’ther.
‘Predecessor’ is loosely defined as prior work that the follow-up is
either built on, or related to. Works where the targeted level is marked
with * were evaluated on that level but claim broader applicability.

frequently accompanied by a rekeying mechanism to further diminish the
predictability of the mapping. Many of them build on the idea of a skewed
cache [157], where each way in a set is determined from the address with
a different mapping function, such that two addresses that share a way in
one bank do not necessarily share ways in other banks.

29

3 State of the Art

RPcache [183] uses pre-computed permutation tables that serve as a
layer of indirection between the address and the cache set. Whenever
a miss in a protected domain would evict a different domain’s cache
line, a random different set is selected instead and the table is updated.
This removes predictable interference between victim and attacker lines.
NewCache [182] extends the RPcache idea with a remapping table that
can map an address to any line in the cache, creating a fully associative
cache with random replacement. MIRAGE [147] picks up the idea of a
fully associative cache design many years later and uses a randomization-
based directory to achieve this for the LLC, arguing the impracticability
of prior designs for very large caches. The design keeps the notion of sets
for its tag storage that provides the indirection to the data, but uses a
randomization-based skew to address them. On a miss, victims are chosen
from all available cache lines, hiding the association between the evicted
and evicting line’s addresses. The Maya Cache [18] similarly argues that
at 20%, MIRAGE’s design requires too much storage overhead for tags.
They assert that most lines that enter the LLC are never reused, and
that it is therefore more efficient to reduce the overall data storage in
favor of the tag store and lower power consumption. RECAST [198] also
approximates a fully associative cache, but does so by storing a per-cache-
line secret in the L1 cache that is used to derive a private LLC set index.
Whenever a line is evicted from the L1 cache and later reloaded, the secret
is recalculated, which changes the mapping of the address to the LLC set.

In 2018, Qureshi proposed CEASER [138], a last-level cache design
that encrypts the address with a low-latency block cipher and uses this
encrypted address to derive the set index. While this alone breaks the
predictable association between addresses and their cache sets, it is also
combined with periodic rekeying, intended to make any information an
attacker may have learned about the mapping useless. In 2019, Scatter
Cache and CEASER-S, a direct follow-up to CEASER, concurrently
proposed two very similar desings based on the idea of cryptographi-
cally constructing cache sets on the fly for each security domain. Where
CEASER-S proposes a skew [157] with a certain number of set partitions
(e.g., P = 2), such that a set is made up of P static partitions, Scatter
Cache skews all individual ways (e.g., P = 16 for a 16-way configuration).
Both designs add rekeying to deny attackers the time to build functional
eviction sets. They are closely followed by PhantomCache [163], which
randomizes sets in a similar manner. Following the publication of new
attacks on randomized caches (see Section 3.1.4), we developed our own
follow-up to ScatterCache. SassCache (Chapter 7) contributes a novel

30

3.1 Secure Cache Designs

mixture of set randomization and randomization-based partitioning to
the state of the art. By adding a second low-latency encryption layer to
the index derivation function, SassCache creates unique partitions for
each security domain. Like in ScatterCache, each address is mapped to a
virtually unique set of ways, of which a cryptographically random subset
will be extremely unlikely to fully overlap with any other security domain.
This allows security critical accesses to quickly ‘hide’ in one of those ways
after only one or two targeted evictions by an attacker. Contrary to earlier
designs, SassCache forgoes rekeying in favor of an appropriately chosen
security parameter. Chameleon Cache [169] also builds on earlier skewed
randomized caches, but tries to overcome their weaknesses by adding a
small, fully associative victim cache to the randomized LLC. This hides
conflict evictions in the randomized cache, as evictions are still in the
victim cache. ClepsydraCache [166] is a hybrid design that combines
index randomization with a time-to-live (TTL) function for each cache line.
This time component introduces ‘decay’, meant to counter state-of-the-art
attacks on randomized caches (see Section 3.1.4). Whenever a new line is
loaded, it is assigned a random TTL within certain bounds. On access,
the TTL is refreshed to a new random value, and the line is evicted when
the TTL expires. The TTL is regularly reduced by a dynamic amount
related to the current rate of conflict misses in the cache. In contrast to
the trend of skewed randomized designs, Song et al. [160] argue that all
contemporary algorithms for eviction set generation can be overcome by
returning to simple randomization of the cache set index with a secure
single-cycle hash function, frequent rekeying, and an attack detector that
triggers further rekeyings.

Instead of contention-based attacks like Prime+Probe, Random Fill
Cache [112] targets internal-collision attacks and shared-memory attacks.
It introduces new instructions that allow a secure application to request
loads that do not cache the target address, but a random address in its
vicinity. This largely preserves performance, while decorrelating address
loads from the resulting cache patterns.

3.1.3 Other Secure Cache Designs

Some designs approach the problem from entirely different directions,
choosing neither randomization nor partitioning.

31

3 State of the Art

SHARP [191] and RIC [87] both follow a similar idea for preventing
cross-core cache attacks via the LLC. They identify inclusion victims,
i.e., cache lines that are evicted from private caches because the are
evicted from the LLC, as a necessity for both Prime+Probe- and Flush+
Reload-style attacks on inclusive cache architectures. SHARP modifies
the replacement policy to prioritize the replacement lines that do not
have copies in any private cache, and if none exist, those that only have a
copy in the core causing the eviction. RIC, instead relaxes the inclusion
property of the LLC for read-only lines, with the reasoning that those
need not be considered for coherence, as they cannot change anyway. Thus,
all read-only memory can be evicted from the LLC without being evicted
from private caches.

First Time Miss [142] (FTM) specifically prevents re-accesses in shared
memory, e.g., during Flush+Reload, from revealing information about the
LLC state of the victim. For the first time that a core loads a line, FTM
guarantees that it behaves like a miss for that core, even it was already
cached in the LLC by a different core. Thus, an attacker cannot tell whether
an address was loaded earlier by the victim. This requires that different
security domains are isolated to their own cores. TimeCache [129] builds
on this idea and extends the granularity by removing the limitation that
only cores are tracked as domains. Instead, any process with a different
address space is treated as a different domain. Hyperthreading and context-
switching are supported by implementing a software-assisted scheme that
associates the timestamp of context-switches with the processes cache
state.

3.1.4 Analyses of Secure Caches

As the number of secure cache designs has steadily grown over the years,
so has the number of publications analyzing the security of the proposed
designs. Already in 2008, Kong et al. [96] analyze PLCache and RPcache.
They point out that the designs are at least still vulnerable to shared-
memory and cache-collision attacks. He and Lee [60] confirm their findings
and examine five more secure caches, including NoMo, NewCache and
Random Fill Cache. They find that all are vulnerable to at least one of
their four types of attacks (Evict+Time, Prime+Probe, Flush+Reload,
and internal collisions), with Random Fill Cache being the only design
to resist both Flush+Reload and internal-collision attacks. In a large
survey [35], Deng et al. test the leakage of 17 secure cache designs in

32

3.1 Secure Cache Designs

the face of known cache attack primitives and new variants they propose.
While virtually all tested designs are vulnerable to some variant of an
attack, Catalyst is a notable standout. This is because it essentially turns
parts of the cache into software-controlled memory regions that never
leave the cache, at the cost of flexibility and generalized protection of
all memory. Targeting only CEASER(S), Brutus [20] effectively demon-
strates the dangers of custom cryptographic functions on the example of
CEASER and CEASER-S. It shows that the low-latency block cipher in
CEASER does not change the relationship between the locations of con-
gruent addresses across rekeying periods. With CaSA [22], Bourgeat et al.
present an analysis framework specifically for randomization-based secure
caches. They argue that some prior designs considered a threat model
that was too narrow, and specifically that CEASER-S and ScatterCache
are vulnerable to attacks that do not rely on building high-probability
eviction sets, but instead repeatedly use low-probability sets to accumulate
information. Of the four tested designs, only NewCache is not vulnerable
to their attacks due to its conflict-based address remapping. Almost con-
currently, Purnal et al. [135] presented a unified model for analyzing the
security of ScatterCache, CEASER-S and standard set-associative caches.
Based on this, they show that the state-of-the-art eviction-set-finding
algorithms assumed by ScatterCache and CEASER-S can be improved by
orders of magnitude (see Prime+Prune+Probe, Section 3.2), significantly
weakening the security assumptions of both designs. Song et al. [159]
also analyze ScatterCache and CEASER-S, coming to similar conclusions.
They suggest improvements to the remapping period for designs these de-
signs or active attack detection methods for simpler designs like CEASER.
Genkin et al. propose CacheFX [47], a cache attack analysis framework to
measure the entropy introduced by each memory access, the difficulty of
building eviction sets and protection against cryptographic attacks. They
evaluate PLcache, CEASER, CEASER-S, ScatterCache, PhantomCache
and NewCache and find that all designs are susceptible to some attacks.
Ramkrishnan et al. [143] identify a potential problem with randomized
designs that implement domain-fusion for shared memory without full
operating system support. When the OS and hardware design do not
support creating new domains for shared, writeable memory, the domains
have to be fused to maintain cache coherence, thereby greatly reducing
the security the design provides. Hence, they propose a new coherence
protocol that avoids the need for domain fusion. In a recent analysis [30]
of randomized cache designs Chakraborty et al. examine their resistance
against the often overlooked occupancy channel. They find that among

33

3 State of the Art

the analyzed designs (CEASER, CEASER-S, ScatterCache, MIRAGE
and SassCache), SassCache is the only design that consistently resists
all occupancy attacks, while MIRAGE proves to be quite vulnerable to a
novel AES key recovery attack. In a preprint SoK [17] on the contributing
security attributes of secure cache designs, Bhatla et al. come to a similar
conclusion w.r.t. occupancy attacks. Further, they find that skewing is one
of the most promising attributes secure caches can have, and that high
associativity of 64 or even 128 offers similar security against conflict-based
attacks as designs like ScatterCache or SassCache.

3.2 Cache Attacks

Beyond the basic cache attack types (see Section 2.2.3), new and refined
attacks are still being actively researched. For set-contention based at-
tacks like Prime+Probe, one avenue of improvement is the generation
of eviction sets. When physical (and sometimes even virtual) addresses
are not available, or the set indexing or slicing function of a cache are
unknown, eviction sets can only be constructed by testing addresses for
eviction against each other.

An early method for constructing eviction sets without knowledge of cache
indexing is described by several works [113, 130]. It starts with an array
large enough to fill the cache and then iteratively removes one address at
a time, testing if the remaining addresses combined can still evict a target
address. If an address is necessary to evict the target, it is added to the
eviction set. This method finds an eviction set in O(n2), where n is the
number of starting addresses (typically enough to cover the entire cache).
Concurrently, Qureshi [139] as well as Vila et al. [176] propose a method
(named Group Elimination Method (GEM) by Qureshi) that removes the
quadratic dependency on the initial set size, by eliminating entire groups
of addresses at once. They reason that in a w-way associative cache, it
must always be possible to divide a set of addresses > w into w+1 groups,
such that at least one group can be removed while the rest still evicts a
target address. Removing 1/w+1 of the addresses at once, GEM improves
set-finding to O(wn) [139]. In our work on cache attacks in WebGPU
(Chapter 6), we develop a parallelized version of GEM, suitable for GPUs
with LRU replacement. In a pre-processing step, we first divide a large
chunk of memory into smaller buckets that do not interfere with each other
in the cache. We then run an optimized version of GEM on each bucket

34

3.2 Cache Attacks

in parallel. Using the LRU replacement properties, we can extract many
complete eviction sets from a single run of GEM on a bucket, significantly
speeding up the process. Our method results in eviction sets for all cache
sets, recovering a set every 28ms on average on an Nvidia RTX 3080.
With Prime+Prune+Probe [135] we improve on prior work by introducing
a pruning step that ensures that the entire starting set of addresses fits
into the cache and ideally fills it. By accessing the target address next and
then measuring the access times of all following accesses to the pruned set,
a cache with LRU replacement will generate a cascade of exactly w misses
in ideal conditions, reducing the runtime to O(n). Conflict Testing with
Probe+Prune ()CTPP) [189] finds that while Prime+Prune+Probe is fast,
its success rate is not very high. They combine it with a pre-processing step
that produces an optimal starting set for Prime+Prune+Probe. Similar
to our work on GPUs, Prune+PlumTree [88] finds eviction sets for a large
part of the cache in bulk instead of one at a time. Also building on Prime+
Prune+Probe, their method reduces the factor of the number of sets s
in the runtime to log(s), resulting in O(n log(s)). Combined with other
optimizations, they are able to find 98% of eviction sets in 40ms to 60ms.

Another avenue of improvement for cache attacks is to tailor attacks to the
replacement policy of the cache. Reload+Refresh [25] is a shared-memory
LLC attack that uses detailed knowledge of the QLRU [1] replacement
policy in 4th-8th generation Intel processors to decrease the detectability
of the attack. Before each measurement, a target address is placed in the
cache deliberately made the eviction candidate by filling its set with other
addresses. When the attacker later adds another address into the target
address’ set, they can measure if it was evicted or not, and thereby learn
if the victim accessed the target. Contrary to Flush+Reload, the victim
will not experience a miss when accessing it. Prime+Scope [136] is an
improvement for cross-core Prime+Probe. It reduces the attack to a single
cache line access per measurement, vastly improving the time resolution
over Prime+Probe. A targeted cache set is primed such that a chosen
scope line is made the eviction candidate, and accesses to it do not change
the LLC set state because they are served by the L1 cache. Accesses to
this line can then be performed quickly and repeatedly without a prime
period in between that would constitute a blind spot for the attacker. A
victim access is detected when the scope line is evicted through the cache’s
coherence mechanism.

Lastly, some publications have found new attack vectors in different
hardware mechanisms. Prime+Abort [40] leverages Intel’s transactional

35

3 State of the Art

synchronization extensions (TSX) [75] to be architecturally notified when
cache lines of interest leave the cache, creating timer-free Prime+Probe
variants. TSX creates sections of code that do not architecturally commit
their results until the entire transaction is completed. When a transaction
performs data writes that are later evicted from the L1 cache, or data
reads that are later evicted from the L3 cache, the transaction is aborted.
Prime+Abort uses this to prime sets within a transaction and be notified
by TSX with an abort when a victim program accesses the same set.
Synchronization Storage Channels [195] similarly shows timer-less cache
attacks on the Apple M1 using its hardware synchronization instructions.
They use the ldrex and strex instructions to monitor a single address
for eviction in the attacker’s L1 cache, which they leverage into a Prime+
Probe-style attack by building a LLC eviction set around it that makes
it the eviction candidate. Yan et al. [192] find that the cache directory
is an often overlooked attack vector for caches, as it needs to contain
information on all lines in the cache hierarchy to maintain coherence.
They demonstrate that Prime+Probe attacks can also be mounted on the
directory in non-inclusive caches. Another (ab-)usable hardware feature is
the cldemote instruction, currently available on Intel server CPUs, which
demotes targeted cache lines from the core towards the LLC, without
flushing them. Rauscher et al. [144] demonstrate that this enables two
new primitives (Demote+Reload, Demote+Demote) that are similar to
Flush+Reload and Flush+Flush, but are faster and have lower blind spots
than early attacks due to not evicting data to the slow DRAM. With
Cohere+Reload (Chapter 5), we find a coherence based attack that targets
AMD SEV. On recent Zen Server architectures, AMD provides automatic
coherence between plaintext and ciphertext for its memory encryption
feature. We find that this is implemented with a half-page granularity,
though the 32 affected cache lines are not contiguous, but spread out
configurable patterns. This means that any access to an encrypted cache
line will check for the presence of any of 32 unencrypted cache lines on the
same page and evict them. The same holds for accesses to the unencrypted
lines evicting encrypted lines. We find that this provides an extremely high
temporal resolution with virtually no blind spot, enabling high-resolution
access traces for victim CVMs across cores or even sockets. In concurrent
work, the same attack is presented under the name Reload+Reload [32].
A similar attack was hypothesized to affect Intel TDX [5], though with
single-line granularity.

36

3.3 Defenses Against Meltdown-Type Attacks

3.3 Defenses Against Meltdown-Type Attacks

Contrary to speculation-related attacks like Spectre, Meltdown-type at-
tacks (see Section 2.4.1) are not caused by intended behavior, and thus
typically considered ‘bugs’ in the microarchitecture, even though they
may arise because of performance optimizations. Consequently, definitive
mitigations often involve hardware changes to the CPU that are not avail-
able until long after the initial discovery. Though microcode mitigations
are sometimes possible, software mitigations are often the only immediate
remedy, even if the performance impact is sometimes significant [100, 101,
103].

The first mitigation against the original Meltdown attack was kernel
page-table isolation (KPTI). It was initially proposed under the name
KAISER [53, 117] as a mitigation against kernel address leakage, a year
before the Meltdown attack was known. It separates the kernel and user
page table structure and exchanges them during context switches, such
that the kernel-exclusive address space is not mapped into the user page
tables at all. This prevents Meltdown, as the requested kernel address
cannot be resolved in user space. On CPUs that support process-context
identifiers (PCID), a feature that enables entries in the TLB to be tagged,
speeds up this process [56] by obviating the need to flush the entire
TLB when the page tables are swapped out. Later CPU generations were
shipped with hardware or microcode mitigations to Meltdown and related
attacks [68], making KPTI once again an optional feature. In a security
bulletin [13] published in 2025, ARM announced a vulnerability related
to prefetching that may lead to kernel data leakage, making KPTI the
default mitigation on affected ARM CPUs [102].

KPTI, however, is ineffective against an attack like Foreshadow [170]
(L1TF-SGX in Intel terminology) that targets SGX. In this threat model,
the adversary controls the operating system, and thus the page tables. As a
pure software solution, KPTI could therefore not be enforced, as this would
be the role of the operating system. Foreshadow was initially addressed
with a microcode update [78] that flushes the L1 cache whenever the
enclave is exited. This does not prevent attacks on a sibling hyperthread
however, as the L1 cache is shared between the two threads. The status
of hyperthreading was therefore added to the SGX attestation process,
allowing enclave software to ensure that hyperthreading is disabled. In
the case of Foreshadow-NG [184] (L1TF-VMM), new microcode added a
mechanism to flush the L1 cache, which a hypervisor can use on each VM

37

3 State of the Art

entry to prevent the attack. Similar to SGX, the hypervisor also needs to
ensure that only mutually trusted workloads are scheduled on the same
physical core at a time to prevent attacks from a sibling thread.

LVI is also not mitigated by KPTI, since attackers can either be privileged
(e.g., for attacks against SGX) and cause faults in the victim program to
trigger a value injection, or use OS-caused faults to attack other user space
programs. As values can be injected through all the same buffers that
Meltdown-type attacks can leak from (see Section 2.4.1), simply clearing
an L1 cache is not enough. The initially proposed mitigations against LVI
were therefore to insert fencing instructions after every (vulnerable) load
that stop any out-of-order execution past the fence. A simple, effective,
yet also very costly [100] mitigation is the “speculative execution side
effect suppression” compiler pass for LLVM [24] that fences all loads. Intel
provided their own optimized compiler option that finds loads that are
followed by gadgets that can leak their value and inserts fences only for
those loads [69, 77]. In the next generation of CPUs after the publication
of LVI, most value injection attacks were mitigated in hardware [68],
and software mitigations were not necessary. The only edge case still
unmitigated in the “Comet Lake” architecture was the forwarding of
the value ‘0’ instead of any buffered value, termed “LVI-NULL” or “LVI
zero data”. Aside from particular code gadgets that are vulnerable to
null injection specifically, LVI-NULL is not generally exploitable outside
of SGX enclaves, as it requires access to the victim’s memory. Within
SGX, however, attackers can still inject arbitrary values with one level
of indirection, the null page, which is outside of the enclave. Mitigating
LVI-NULL particular attack without the overhead of existing mitigations
is the goal of LVI-NULLify (Chapter 9). Since all null value injections into
pointers now redirect loads to the null page, our mitigation brings the null
page into the enclave. We achieve this by using segmentation (Section 2.1)
to make all loads in an enclave relative to the GS segment start, which we
place at the beginning of the enclave. By marking the first pages in the
enclave non-executable and non-readable, any transiently redirected load
stalls. With this mechanism, our mitigation provides strong protection
against LVI-NULL while only incurring a small performance overhead
compared to general LVI mitigations.

Aside from direct mitigations for concrete vulnerabilities, both vendors
and academia have presented more general defenses in depth against
transient execution attacks. The new Intel feature linear address space
separation (LASS) [72] is on such defense against transient attacks that

38

3.3 Defenses Against Meltdown-Type Attacks

try to cross the boundary into kernel space. When enabled, it enforces the
already existing convention that all linear addresses with a most-significant
bit of 1 are kernel space addresses. Contrary to permissions in the page
tables entries, this permission is encoded in the linear address and can
thus be enforced earlier in an operation, preventing data leakage like
Meltdown and other microarchitectural attacks like KASLR breaks [27,
28, 57, 65, 82, 98, 152] from the outset. As another defense in depth, our
own work, SMTCache (see Chapter 8), can also thwart the Meltdown
attacks loading from L1, as the kernel resides in a separate cache slice.
Other academic works investigate the feasibility of making information of
transient execution architecturally available to programs [116], completely
blocking all side effects of speculative execution until commit [89], or
more narrowly targeting the cache as an exfiltration mechanism by only
allowing some (safe) loads [105, 148, 149], buffering speculative accesses to
the cache hierarchy until after instruction commit [4, 54, 190] or undoing
cache changes when an instruction is squashed [146].

39

4
Conclusion

In this thesis, we presented novel attacks on caches and hardware cache
coherence mechanisms. The constant stream of new attacks on caches
and their surroundings motivates research into mitigations against these
attacks. In this direction, we developed secure cache designs and a software
mitigation that prevents side-channel leakage. Based on the insights from
this work, we draw the following two conclusions.

The field of secure caches is maturing, and the remaining open research
questions are moving from specific security properties towards the practical-
ity and compatibility with the existing real-world hardware-software ecosys-
tem. Since the publication of CEASER-S [139] and ScatterCache [186] in
2019, about as many secure cache designs have been published as in the
15 years prior. In this time, the field has undergone large changes, spurred
by many works critically evaluating prior designs [20, 22, 30, 35, 47, 135,
139, 159]. The state of the art has advanced to a point where for a given
set of security criteria, building blocks to create a fitting design are almost
certainly known. In our work on secure last-level caches (Chapter 7),
for instance, we found that combining randomization with elements of
partitioning can be a viable way to achieve strong security for Prime+
Probe-style attacks as well as occupancy attacks, and recent work has
confirmed these findings [30]. However, this design comes at an increased
performance cost compared to other, less secure works. This tradeoff is one
of the areas that will need to be investigated more concretely. In particular,
we need to investigate what the most efficient ways to achieve different
security guarantees are, and whether some design elements provide a
significantly better security-to-performance ratio than others. While the
most obvious and indeed the most frequent path is to trade security for
performance, our secure L1 design (Chapter 8), for example, suggests that
chip area is another possible tradeoff. In either case, it remains an open
question how close performance, security and efficiency can ultimately
be aligned, and, more importantly, how big a cost any particular use

41

4 Conclusion

case can bear. For example, the interaction of secure cache designs with
high-performance ecosystems that are reliant on specific hardware behav-
iors to optimize performance, e.g., structure alignment for optimal cache
utilization, is currently unclear for most designs. Finally, the complexity
of modern CPU designs has long been so high that formal verification of
correctness in cache coherence is a hard problem [36], and newer work [197]
shows that current CPUs can still be affected by coherence errors. While
many proposed secure cache designs will undoubtedly be more difficult
to verify, it is unclear if this is universally the case, or if some designs’
coherence is only as complex as current cache designs, or even less.

Layered defenses create flexibility against yet unknown side-channel attacks.
As discussed above, verification of correctness alone is a monumental task
in today’s highly complex processors. Precluding all side-channels in the
design step is currently not feasible. However, as our software defense
against LVI-NULL (Chapter 9) demonstrates, having a broad selection
of hardware features to draw from can allow the creation of impromptu
defenses when they are needed. Besides segmentation, a new feature that
we will most likely provide significant defense in depth is Intel LASS [72],
which cuts off many memory-related side channels, e.g., KASLR breaks,
at the root. Our design, SMTCache (Chapter 8), similarly provides such
defense in depth and can prevent Meltdown-like leakage from the L1. Intel
CAT [70] further strengthens this point. Though not initially intended as a
security feature, research [111] has demonstrated that it can be a powerful
measure against cache attacks. If applied to GPUS, a either partitioning
solution could also protect high-value GPU workloads from the Prime+
Probe attacks demonstrated in Chapter 6.

42

References

[1] Andreas Abel and Jan Reineke. nanoBench: A Low-Overhead Tool
for Running Microbenchmarks on x86 Systems. In: ISPASS. 2020
(pp. 15, 35).

[2] Andreas Abel and Jan Reineke. uops.info: Characterizing Latency,
Throughput, and Port Usage of Instructions on Intel Microarchi-
tectures. In: ASPLOS. 2019 (p. 15).

[3] Jaeguk Ahn, Cheolgyu Jin, Jiho Kim, Minsoo Rhu, Yunsi Fei, David
Kaeli, and John Kim. Trident: A Hybrid Correlation-Collision GPU
Cache Timing Attack for AES Key Recovery. In: HPCA. 2021 (p. 6).

[4] Sam Ainsworth and Timothy M Jones. MuonTrap: Preventing
Cross-Domain Spectre-Like Attacks by Capturing Speculative State.
In: arXiv:1911.08384 (2019) (p. 39).

[5] Erdem Aktas, Cfir Cohen, Josh Eads, James Forshaw, and Felix
Wilhelm. Intel Trust Domain Extensions (TDX) Security Review.
2023. url: https://services.google.com/fh/files/misc/int
el_tdx_-_full_report_041423.pdf (p. 36).

[6] AMD. 5TH GEN AMD EPYC™ PROCESSOR ARCHITECTURE.
2025. url: https://www.amd.com/content/dam/amd/en/docum
ents/epyc-business-docs/white-papers/5th-gen-amd-epyc-

processor-architecture-white-paper.pdf (p. 17).

[7] AMD. AMD EPYC™ 9004 Series Architecture Overview. 2023. url:
https://www.amd.com/content/dam/amd/en/documents/epyc-

technical-docs/white-papers/58015-epyc-9004-tg-archite

cture-overview.pdf (p. 16).

[8] AMD. AMD Secure Encrypted Virtualization (SEV). 2024. url:
https://developer.amd.com/sev/ (pp. 4, 5, 19, 20).

[9] AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More. 2020. url: https://www.amd.com/conten
t/dam/amd/en/documents/epyc-business-docs/white-papers

/SEV-SNP-strengthening-vm-isolation-with-integrity-pro

tection-and-more.pdf (pp. 19, 20).

[10] AMD. AMD64 Architecture Programmer’s Manual. 2024 (pp. 6,
20).

43

https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/5th-gen-amd-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/5th-gen-amd-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/5th-gen-amd-epyc-processor-architecture-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/white-papers/58015-epyc-9004-tg-architecture-overview.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/white-papers/58015-epyc-9004-tg-architecture-overview.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/white-papers/58015-epyc-9004-tg-architecture-overview.pdf
https://developer.amd.com/sev/
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

References

[11] ARM. Arm Confidential Compute Architecture. 2024. url: https:
//www.arm.com/architecture/security-features/arm-confi

dential-compute-architecture (p. 19).

[12] ARM. TrustZone for Arm Cortex-M Processors. 2024. url: htt
ps://www.arm.com/technologies/trustzone-for-cortex-a

(pp. 4, 19).

[13] Arm. Arm CPU Security Bulletin: CVE-2024-7881. 2025. url:
https://developer.arm.com/documentation/110326/latest

(p. 37).

[14] Nathan Beckmann and Daniel Sanchez. Jigsaw: Scalable software-
defined caches. In: PACT. 2013 (p. 28).

[15] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
2005. url: http://cr.yp.to/antiforgery/cachetiming-20050
414.pdf (pp. 3, 18).

[16] Guido Bertoni, Vittorio Zaccaria, Luca Breveglieri, Matteo
Monchiero, and Gianluca Palermo. AES power attack based on
induced cache miss and countermeasure. In: International Confer-
ence on Information Technology: Coding and Computing (ITCC)
(2005) (p. 18).

[17] Anubhav Bhatla, Hari Rohit Bhavsar, Sayandeep Saha, and Biswa-
bandan Panda. SoK: So, You Think You Know All About Secure
Randomized Caches? In: (2025). url: https://anubhavbhatla.g
ithub.io/assets/pdf/SoK.pdf (pp. 4, 34).

[18] Anubhav Bhatla, Biswabandan Panda, et al. The Maya Cache: A
Storage-efficient and Secure Fully-associative Last-level Cache. In:
ISCA. 2024 (pp. 29, 30).

[19] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neug-
schwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer,
and Anil Kurmus. SMoTherSpectre: Exploiting Speculative Execu-
tion through Port Contention. In: CCS. 2019 (p. 4).

[20] Rahul Bodduna, Vinod Ganesan, Patanjali Slpsk, Kamakoti Veezhi-
nathan, and Chester Rebeiro. Brutus: Refuting the security claims
of the cache timing randomization countermeasure proposed in
ceaser. In: IEEE Computer Architecture Letters 19.1 (2020), pp. 9–
12 (pp. 4, 33, 41).

[21] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks
against AES. In: CHES. 2006 (pp. 3, 18).

44

https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://developer.arm.com/documentation/110326/latest
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://anubhavbhatla.github.io/assets/pdf/SoK.pdf
https://anubhavbhatla.github.io/assets/pdf/SoK.pdf

[22] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel
Emer, and Mengjia Yan. CaSA: End-to-end Quantitative Security
Analysis of Randomly Mapped Caches. In: MICRO. 2020 (pp. 4,
33, 41).

[23] Bramley, Jacob. Page Colouring on ARMv6 (and a bit on ARMv7).
2013. url: https://community.arm.com/arm-community-blogs
/b/architectures-and-processors-blog/posts/page-colour

ing-on-armv6-and-a-bit-on-armv7 (p. 14).

[24] Zola Bridges. LLVM SESES pass for LVI. 2020. url: https://re
views.llvm.org/D75939 (pp. 8, 38).

[25] Samira Briongos, Pedro Malagón, José M Moya, and Thomas
Eisenbarth. RELOAD+REFRESH: Abusing Cache Replacement
Policies to Perform Stealthy Cache Attacks. In: USENIX Security.
2020 (pp. 4, 35).

[26] David Brumley and Dan Boneh. Remote Timing Attacks Are
Practical. In: USENIX Security. 2003 (p. 3).

[27] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (pp. 4,
8, 22, 39).

[28] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In:
AsiaCCS. 2020 (pp. 9, 39).

[29] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security. 2019 (pp. 4,
22).

[30] Anirban Chakraborty, Nimish Mishra, Sayandeep Saha, Sarani
Bhattacharya, and Debdeep Mukhopadhyay. Systematic Evalua-
tion of Randomized Cache Designs against Cache Occupancy. In:
USENIX Security. 2025 (pp. 4, 18, 33, 41).

[31] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. SgxPectre Attacks: Stealing Intel Se-
crets from SGX Enclaves via Speculative Execution. In: EuroS&P.
2019 (pp. 4, 5).

45

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/page-colouring-on-armv6-and-a-bit-on-armv7
https://reviews.llvm.org/D75939
https://reviews.llvm.org/D75939

References

[32] Li-Chung Chiang and Shih-Wei Li. Reload+Reload: Exploiting
Cache and Memory Contention Side Channel on AMD SEV. In:
ASPLOS. 2025 (p. 36).

[33] Confidential Computing Consortium. A Technical Analysis of Con-
fidential Computing. 2022 (p. 19).

[34] Victor Costan and Srinivas Devadas. Intel SGX Explained. In:
Cryptology ePrint Archive, Report 2016/086 (2016) (p. 19).

[35] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. Analysis of Secure
Caches using a Three-Step Model for Timing-Based Attacks. In:
Journal of Hardware and Systems Security 3.4 (2019), pp. 397–425
(pp. 4, 32, 41).

[36] Andrew DeOrio, Adam Bauserman, and Valeria Bertacco. Post-
Silicon Verification for Cache Coherence. In: IEEE International
Conference on Computer Design. 2008 (p. 42).

[37] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi.
HybCache: Hybrid side-channel-resilient caches for trusted execu-
tion environments. In: USENIX Security. 2019 (pp. 27, 29).

[38] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-
Reza Sadeghi, and Emmanuel Stapf. Chunked-cache: On-demand
and scalable cache isolation for security architectures. In: NDSS.
2022 (pp. 27, 29).

[39] Jean-Francois Dhem, Francois Koeune, Philippe-Alexandre Leroux,
Patrick Mestré, Jean-Jacques Quisquater, and Jean-Louis Willems.
A practical implementation of the timing attack. In: International
Conference on Smart Card Research and Advanced Applications.
Springer. 1998 (p. 3).

[40] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using
Intel TSX. In: USENIX Security. 2017 (p. 35).

[41] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-
Ghazaleh, and Dmitry Ponomarev. Non-Monopolizable Caches:
Low-Complexity Mitigation of Cache Side Channel Attacks. In:
ACM Transactions on Architecture and Code Optimization (TACO)
8.4 (2011) (pp. 26, 29).

[42] Ulrich Drepper. Elf Handling for Thread-Local Storage. Tech. rep.
2013. url: https://www.akkadia.org/drepper/tls.pdf (p. 12).

46

https://www.akkadia.org/drepper/tls.pdf

[43] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang,
Jesse Liu, and Jesse Fang. Secure encrypted virtualization is unse-
cure. In: arXiv:1712.05090 (2017) (p. 20).

[44] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh,
Andres Marquez, and Kevin Barker. Leaky Buddies: Cross-
Component Covert Channels on Integrated CPU-GPU Systems.
In: ISCA. 2021 (p. 6).

[45] Sankha Baran Dutta, Hoda Naghibijouybari, Arjun Gupta, Nael
B. Abu-Ghazaleh, Andres Marquez, and Kevin J. Barker. Spy in
the GPU-box: Covert and Side Channel Attacks on Multi-GPU
Systems. In: ISCA. 2022 (p. 6).

[46] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In: ASPLOS. 2018 (p. 5).

[47] Daniel Genkin, William Kosasih, Fangfei Liu, Anna Trikalinou,
Thomas Unterluggauer, and Yuval Yarom. CacheFX: A Framework
for Evaluating Cache Security. In: arXiv:2201.11377 (2022) (pp. 4,
33, 41).

[48] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer.
Stealing keys from PCs using a radio: Cheap electromagnetic at-
tacks on windowed exponentiation. In: CHES. 2015 (p. 3).

[49] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA Key Extraction
via Low-Bandwidth Acoustic Cryptanalysis. In: CRYPTO. 2014
(p. 3).

[50] Lukas Gerlach, Simon Schwarz, Nicolas Faroß, and Michael Schwarz.
Efficient and generic microarchitectural hash-function recovery. In:
S&P. 2024 (p. 16).

[51] Lukas Giner, Roland Czerny, Simon Lammer, Aaron Giner, Paul
Gollob, Jonas Juffinger, and Daniel Gruss. Fast and Efficient Secure
L1 Caches for SMT. In: ARES. 2025 (p. 29).

[52] Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder,
Thomas Unterluggauer, Stefan Mangard, and Daniel Gruss. Scatter
and Split Securely: Defeating Cache Contention and Occupancy
Attacks. In: USENIX Security. 2023 (p. 29).

[53] Thomas Gleixner. x86/kpti: Kernel Page Table Isolation (was
KAISER). 2017. url: https://lkml.org/lkml/2017/12/4/709
(p. 37).

47

https://lkml.org/lkml/2017/12/4/709

References

[54] Abraham Gonzalez, Ben Korpan, Jerry Zhao, Ed Younis, and
Krste Asanović. Replicating and Mitigating Spectre Attacks on a
Open Source RISC-V Microarchitecture. In: Third Workshop on
Computer Architecture Research with RISC-V (CARRV). 2019
(p. 39).

[55] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Translation Leak-aside Buffer: Defeating Cache Side-channel Pro-
tections with TLB Attacks. In: USENIX Security. 2018 (p. 9).

[56] Daniel Gruss, Dave Hansen, and Brendan Gregg. Kernel Isolation:
From an Academic Idea to an Efficient Patch for Every Computer.
In: USENIX ;login (2018) (p. 37).

[57] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In: CCS. 2016 (p. 39).

[58] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (pp. 4, 19).

[59] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security. 2015 (p. 19).

[60] Zecheng He and Ruby B Lee. How secure is your cache against
side-channel attacks? In: MICRO. 2017 (p. 32).

[61] Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted
virtual machines. In: ACM SIGPLAN Notices 52.7 (2017), pp. 129–
142 (p. 20).

[62] Zhang Hongxin, Huang Yuewang, Wang Jianxin, Lu Yinghua, and
Zhang Jinling. Recognition of electro-magnetic leakage information
from computer radiation with SVM. In: Computers & Security
28.1-2 (2009), pp. 72–76 (p. 3).

[63] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (p. 4).

[64] Wei-Ming Hu. Lattice Scheduling and Covert Channels. In: S&P.
1992 (p. 3).

[65] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P. 2013
(pp. 9, 16, 39).

48

[66] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei
Zhao, Jian Zhai, and Mingshu Li. Bluethunder: A 2-level Directional
Predictor Based Side-Channel Attack against SGX. In: CHES. 2020
(p. 5).

[67] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Seriously, get off my cloud! Cross-
VM RSA Key Recovery in a Public Cloud. In: Cryptology ePrint
Archive, Report 2015/898 (2015) (p. 16).

[68] Intel. Affected Processors: Transient Execution Attacks. 2020. url:
https://software.intel.com/security-software-guidance

/processors-affected-transient-execution-attack-mitiga

tion-product-cpu-model (pp. 8, 37, 38).

[69] Intel. An Optimized Mitigation Approach for Load Value Injection.
2020. url: https://www.intel.com/content/www/us/en/devel
oper/articles/technical/software-security-guidance/bes

t-practices/optimized-mitigation-approach-load-value-i

njection.html (pp. 8, 38).

[70] Intel. Improving Real-Time Performance by Utilizing Cache Allo-
cation Technology: Enhancing Performance via Allocation of the
Processor’s Cache. 2015. url: https://www.intel.com/content
/dam/www/public/us/en/documents/white-papers/cache-all

ocation-technology-white-paper.pdf (pp. 26, 42).

[71] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2023 (pp. 15, 16).

[72] Intel. Intel Architecture Instruction Set Extensions and Future
Features. 2022 (pp. 38, 42).

[73] Intel. Intel Software Guard Extensions (Intel SGX). 2024. url:
https://www.intel.com/content/www/us/en/products/do

cs/accelerator-engines/software-guard-extensions.html

(pp. 4, 19).

[74] Intel. Intel Trust Domain Extensions. 2021. url: https://softwa
re.intel.com/content/dam/develop/external/us/en/docume

nts/tdx-whitepaper-v4.pdf (pp. 4, 19).

[75] Intel. Intel® Transactional Synchronization Extensions (Intel®
TSX) Memory and Performance Monitoring Update for Intel®
Processors. 2024. url: https://www.intel.com/content/www/u
s/en/support/articles/000059422/processors.html (p. 36).

49

https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/optimized-mitigation-approach-load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/optimized-mitigation-approach-load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/optimized-mitigation-approach-load-value-injection.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/optimized-mitigation-approach-load-value-injection.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059422/processors.html

References

[76] Intel. Intel® Xeon® Processor Scalable Family Technical
Overview. 2022. url: https://www.intel.com/content/www
/us/en/developer/articles/technical/xeon-processor-sca

lable-family-technical-overview.html (p. 17).

[77] Intel. Load Value Injection. 2020. url: https://software.intel
.com/content/www/us/en/develop/articles/software-secur

ity-guidance/technical-documentation/load-value-inject

ion.html (pp. 22, 38).

[78] Intel. Q3 2018 Speculative Execution Side Channel Update. 2019.
url: https://www.intel.com/content/www/us/en/security-c
enter/advisory/intel-sa-00161.html (p. 37).

[79] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic
reverse engineering of cache slice selection in Intel processors. In:
Euromicro Conference on Digital System Design. 2015 (p. 16).

[80] Sanjeev Jahagirdar, Varghese George, Inder Sodhi, and Ryan Wells.
Power Management of the Third Generation Intel Core Micro
Architecture formerly codenamed Ivy Bridge. In: IEEE Hot Chips
Symposium (HCS). 2012 (p. 15).

[81] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer.
High performance cache replacement using re-reference interval
prediction (RRIP). In: ACM SIGARCH Computer Architecture
News 38.3 (2010), pp. 60–71 (p. 15).

[82] Yeongjin Jang, Sangho Lee, and Taesoo Kim. Breaking Kernel
Address Space Layout Randomization with Intel TSX. In: CCS.
2016 (p. 39).

[83] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A complete key
recovery timing attack on a GPU. In: HPCA. 2016 (p. 6).

[84] Toni Juan, Dolors Royo, and Juan J Navarro. Dynamic Cache
Splitting. In: International Conference of the Chilean Computer
Science Society (1995) (p. 25).

[85] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory
Encryption. 2016 (p. 20).

[86] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup,
Eyal Ronen, and Yuval Yarom. The gates of time: Improving cache
attacks with transient execution. In: USENIX Security. 2023 (p. 4).

50

https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html

[87] Mehmet Kayaalp, Khaled N Khasawneh, Hodjat Asghari Esfeden,
Jesse Elwell, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. RIC: Relaxed Inclusion Caches for Mitigating LLC Side-
Channel Attacks. In: Design Automation Conference. 2017 (pp. 29,
32).

[88] Tom Kessous and Niv Gilboa. Prune+PlumTree - Finding Eviction
Sets at Scale. In: S&P. 2024 (p. 35).

[89] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. SafeSpec: Banishing the Spectre of a Meltdown with
Leakage-Free Speculation. In: DAC. 2019 (p. 39).

[90] Taehun Kim and Youngjoo Shin. ThermalBleed: A Practical Ther-
mal Side-Channel Attack. In: IEEE Access 10 (2022), pp. 25718–
25731 (p. 3).

[91] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas
Devadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In: MICRO. 2018
(pp. 27, 29).

[92] Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In: CRYPTO. 1996 (p. 3).

[93] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 4,
8, 21, 23).

[94] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In: CRYPTO. 1999 (p. 3).

[95] Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Mar-
tin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard.
Collide+Power: Leaking Inaccessible Data with Software-based
Power Side Channels. In: USENIX Security. 2023 (pp. 3, 9).

[96] Jingfei Kong, Onur Acıiçmez, Jean-Pierre Seifert, and Huiyang
Zhou. Deconstructing new cache designs for thwarting software
cache-based side channel attacks. In: Computer Security Architec-
tures Workshop (CSAW) (2008), p. 25 (p. 32).

51

References

[97] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (p. 4).

[98] Jakob Koschel, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
TagBleed: Breaking KASLR on the Isolated Kernel Address Space
Using Tagged TLBs. In: EuroS&P. 2020 (pp. 9, 39).

[99] Butler W Lampson. A note on the confinement problem. In: Com-
munications of the ACM (1973) (p. 3).

[100] Michael Larabel. Google Engineer Shows “SESES” For Mitigating
LVI + Side-Channel Attacks. 2020. url: https://www.phoronix
.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-

LVI-More (pp. 37, 38).

[101] Michael Larabel. The Brutal Performance Impact From Mitigating
The LVI Vulnerability. 2020. url: https://www.phoronix.com/s
can.php?page=article&item=lvi-attack-perf (p. 37).

[102] Larabel, Michael. Arm Changing Linux Default To Costly ”KPTI”
Mitigation For Some Newer CPUs. 2025. url: https://www.phor
onix.com/news/Arm-Linux-CVE-2024-7881-KPTI (p. 37).

[103] Larabel, Michael. The Current Spectre / Meltdown Mitigation
Overhead Benchmarks On Linux 5.0. 2019. url: https://www.ph
oronix.com/review/linux50-spectre-meltdown (p. 37).

[104] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring Fine-grained Control Flow
Inside SGX Enclaves with Branch Shadowing. In: USENIX Security.
2017 (p. 5).

[105] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng.
Conditional Speculation: An effective approach to safeguard out-of-
order execution against spectre attacks. In: HPCA. 2019 (p. 39).

[106] Qianru Liao, Yongzhi Huang, Yandao Huang, Yuheng Zhong,
Huitong Jin, and Kaishun Wu. MagEar: eavesdropping via au-
dio recovery using magnetic side channel. In: MobiSys. 2022 (p. 3).

[107] Moritz Lipp, Daniel Gruss, and Michael Schwarz. AMD Prefetch
Attacks through Power and Time. In: USENIX Security. 2022
(p. 9).

52

https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-LVI-More
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-LVI-More
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-LVI-More
https://www.phoronix.com/scan.php?page=article&item=lvi-attack-perf
https://www.phoronix.com/scan.php?page=article&item=lvi-attack-perf
https://www.phoronix.com/news/Arm-Linux-CVE-2024-7881-KPTI
https://www.phoronix.com/news/Arm-Linux-CVE-2024-7881-KPTI
https://www.phoronix.com/review/linux50-spectre-meltdown
https://www.phoronix.com/review/linux50-spectre-meltdown

[108] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS:
Software-based Power Side-Channel Attacks on x86. In: S&P. 2021
(pp. 3, 9).

[109] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security. 2018 (pp. 4, 8, 21, 22).

[110] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel.
Frequency Throttling Side-Channel Attack. In: CCS. 2022 (pp. 3,
9).

[111] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. CATalyst: Defeating Last-Level
Cache Side Channel Attacks in Cloud Computing. In: HPCA. 2016
(pp. 26, 29, 42).

[112] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In:
MICRO. 2014 (pp. 29, 31).

[113] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (pp. 16, 18, 34).

[114] EntryBleed: A Universal KASLR Bypass against KPTI on Linux.
2023 (p. 9).

[115] Zhuoran Liu, Niels Samwel, Leo Weissbart, Zhengyu Zhao, Dirk
Lauret, Lejla Batina, and Martha Larson. Screen gleaning: A screen
reading TEMPEST attack on mobile devices exploiting an electro-
magnetic side channel. In: NDSS. 2021 (p. 3).

[116] Jason Lowe-Power, Venkatesh Akella, Matthew K Farrens, Samuel
T King, and Christopher J Nitta. Position Paper: A case for expos-
ing extra-architectural state in the ISA. In: HASP. 2018 (p. 39).

[117] LWN. The current state of kernel page-table isolation. 2017. url:
https://lwn.net/Articles/741878/ (pp. 5, 37).

[118] Lukas Maar, Lukas Giner, Daniel Gruss, and Stefan Mangard.
When Good Kernel Defenses Go Bad: Reliable and Stable Ker-
nel Exploits via Defense-Amplified TLB Side-Channel Leaks. In:
USENIX Security. 2025 (p. 9).

53

https://lwn.net/Articles/741878/

References

[119] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (p. 4).

[120] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Complex Addressing Using Performance Counters. In: RAID. 2015
(p. 16).

[121] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX amplifies the power of cache attacks. In:
CHES. 2017 (p. 5).

[122] Daniel Moghimi. Downfall: Exploiting Speculative Data Gathering.
In: USENIX Security. 2023 (pp. 4, 22).

[123] Baker Mohammad. Embedded Memory Design for Multi-Core and
Systems on Chip. Vol. 116. Analog Circuits and Signal Processing.
Springer, 2014 (p. 13).

[124] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha
Wessel. Severed: Subverting AMD’s virtual machine encryption. In:
EuroSec. 2018 (p. 20).

[125] Bradley Morgan, Gal Horowitz, Sioli O’Connell, Stephan van
Schaik, Chitchanok Chuengsatiansup, Daniel Genkin, Olaf Maen-
nel, Paul Montague, Eyal Ronen, and Yuval Yarom. Slice+Slice
Baby: Generating Last-Level Cache Eviction Sets in the Blink of
an Eye. In: S&P. 2025 (p. 16).

[126] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman
P Jouppi. CACTI 6.0: A Tool to Model Large Caches. In: HP
Laboratories 27 (2009), p. 28 (p. 15).

[127] Vijay Nagarajan, Daniel J Sorin, Mark D Hill, and David A Wood.
A primer on memory consistency and cache coherence. Springer
Nature, 2020 (pp. 16, 17).

[128] Hoda Naghibijouybari, Khaled N. Khasawneh, and Nael B. Abu-
Ghazaleh. Constructing and characterizing covert channels on GPG-
PUs. In: MICRO. 2017 (p. 6).

[129] Divya Ojha and Sandhya Dwarkadas. TimeCache: Using Time to
Eliminate Cache Side Channels when Sharing Software. In: ISCA.
2021 (pp. 29, 32).

54

[130] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In: CCS. 2015 (pp. 18,
34).

[131] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks
and Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 3,
4, 18).

[132] Dan Page. Partitioned Cache Architecture as a Side-Channel De-
fence Mechanism. In: Cryptology ePrint Archive, Report 2005/280
(2005) (p. 25).

[133] Dan Page. Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel. In: Cryptology ePrint Archive, Report 2002/169
(2002) (pp. 3, 18).

[134] Colin Percival. Cache Missing for Fun and Profit. In: BSDCan.
2005 (pp. 4, 18).

[135] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Ver-
bauwhede. Systematic Analysis of Randomization-based Protected
Cache Architectures. In: S&P. 2021 (pp. 4, 6, 9, 33, 35, 41).

[136] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks. In: CCS. 2021 (pp. 4, 35).

[137] Antoon Purnal and Ingrid Verbauwhede. Advanced profiling for
probabilistic Prime+Probe attacks and covert channels in Scatter-
Cache. In: arXiv:1908.03383 (2019) (p. 9).

[138] Moinuddin K Qureshi. CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping. In: MICRO. 2018
(pp. 29, 30).

[139] Moinuddin K Qureshi. New attacks and defense for encrypted-
address cache. In: ISCA. 2019 (pp. 4, 7, 18, 29, 34, 41).

[140] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely,
and Joel Emer. Adaptive insertion policies for high performance
caching. In: ACM SIGARCH Computer Architecture News 35.2
(2007), p. 381 (p. 15).

[141] Mikka Rainer, Lorenz Hetterich, Fabian Thomas, Tristan Hor-
netz, Leon Trampert, Lukas Gerlach, and Michael Schwarz. Rapid
Reversing of Non-Linear CPU Cache Slice Functions: Unlocking
Physical Address Leakage. In: S&P. 2025 (p. 16).

55

References

[142] Kartik Ramkrishnan, Stephen McCamant, Pen Chung Yew, and
Antonia Zhai. First Time Miss: Low Overhead Mitigation for Shared
Memory Cache Side Channels. In: Conference on Parallel Process-
ing. 2020 (pp. 29, 32).

[143] Kartik Ramkrishnan, Stephen McCamant, Antonia Zhai, and Pen-
Chung Yew. Non-Fusion Based Coherent Cache Randomization
Using Cross-Domain Accesses. In: Asia CCS. 2024 (p. 33).

[144] Fabian Rauscher, Carina Fiedler, Andreas Kogler, and Daniel
Gruss. A Systematic Evaluation of Novel and Existing Cache Side
Channels. In: NDSS. 2025 (p. 36).

[145] Gururaj Saileshwar, Sanjay Kariyappa, and Moinuddin Qureshi.
Bespoke cache enclaves: Fine-grained and scalable isolation from
cache side-channels via flexible set-partitioning. In: SEED. IEEE.
2021 (pp. 27, 29).

[146] Gururaj Saileshwar and Moinuddin K Qureshi. CleanupSpec: An
“Undo” Approach to Safe Speculation. In: MICRO. 2019 (p. 39).

[147] Gururaj Saileshwar and Moinuddin K. Qureshi. MIRAGE: Mitigat-
ing Conflict-Based Cache Attacks with a Practical Fully-Associative
Design. In: USENIX Security. 2021 (pp. 29, 30).

[148] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jim-
borean, Stefanos Kaxiras, and Magnus Själander. Ghost loads:
what is the cost of invisible speculation? In: International Confer-
ence on Computing Frontiers. 2019 (p. 39).

[149] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jim-
borean, and Magnus Själander. Efficient invisible speculative exe-
cution through selective delay and value prediction. In: ISCA. 2019
(p. 39).

[150] Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and
efficient fine-grain cache partitioning. In: ISCA. 2011 (pp. 26, 29).

[151] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 4,
5, 8, 22).

[152] Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant
CPUs. In: arXiv:1905.05725. 2019 (p. 39).

56

[153] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 4, 5,
8, 22).

[154] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. NetSpectre: Read Arbitrary Memory over Network.
In: ESORICS. 2019 (pp. 4, 22).

[155] Brian C. Schwedock and Nathan Beckmann. Jumanji: The Case
for Dynamic NUCA in the Datacenter. In: MICRO. 2020 (pp. 28,
29).

[156] Mark Seaborn. L3 cache mapping on Sandy Bridge CPUs. Apr.
2015. url: http://lackingrhoticity.blogspot.com/2015/04
/l3-cache-mapping-on-sandy-bridge-cpus.html (p. 16).

[157] André Seznec. A case for two-way skewed-associative caches. In:
ACM Computer Architecture News (1993) (pp. 25, 29, 30).

[158] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust Website Fin-
gerprinting Through The Cache Occupancy Channel. In: USENIX
Security. 2019 (p. 18).

[159] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and
Peng Liu. Randomized Last-Level Caches Are Still Vulnerable to
Cache Side-Channel Attacks! But We Can Fix It. In: S&P. 2021
(pp. 4, 33, 41).

[160] Wei Song, Zihan Xue, Jinchi Han, Zhenzhen Li, and Peng Liu.
Randomizing Set-Associative Caches Against Conflict-Based Cache
Side-Channel Attacks. In: IEEE Transactions on Computers 73.4
(2024), pp. 1019–1033 (pp. 29, 31).

[161] Gerson de Souza Faria and Hae Yong Kim. Differential audio
analysis: a new side-channel attack on PIN pads. In: International
Journal of Information Security 18 (2019), pp. 73–84 (p. 3).

[162] Julian Stecklina and Thomas Prescher. LazyFP: Leaking
FPU Register State using Microarchitectural Side-Channels. In:
arXiv:1806.07480 (2018) (pp. 4, 22).

[163] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. PhantomCache:
Obfuscating Cache Conflicts with Localized Randomization. In:
NDSS. 2020 (pp. 7, 29, 30).

57

http://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html
http://lackingrhoticity.blogspot.com/2015/04/l3-cache-mapping-on-sandy-bridge-cpus.html

References

[164] Mutaz Al-Tarawneh. An Investigation of the Impact of Instruction
Cache (I-Cache) Organization on Power-Performance Trade-Offs in
the Design of Scalar Processors. In: European Journal of Scientific
Research 115 (Nov. 2013), pp. 7–26 (p. 15).

[165] Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and Herbert Bos.
TLB;DR: Enhancing TLB-based Attacks with TLB Desynchronized
Reverse Engineering. In: USENIX Security. 2022 (p. 9).

[166] Jan Philipp Thoma, Christian Niesler, Dominic Funke, Gregor
Leander, Pierre Mayr, Nils Pohl, Lucas Davi, and Tim Güneysu.
ClepsydraCache – Preventing Cache Attacks with Time-Based
Evictions. In: USENIX Security. 2023 (pp. 29, 31).

[167] Daniel Townley, Kerem Arıkan, Yu David Liu, Dmitry Pono-
marev, and Oğuz Ergin. Composable Cachelets: Protecting Enclaves
from Cache {Side-Channel} Attacks. In: USENIX Security. 2022,
pp. 2839–2856 (pp. 27, 29).

[168] Yukiyasu Tsunoo, Teruo Saito, and Tomoyasu Suzaki. Cryptanaly-
sis of DES implemented on computers with cache. In: CHES. 2003
(pp. 3, 18).

[169] Thomas Unterluggauer, Austin Harris, Scott Constable, Fangfei
Liu, and Carlos Rozas. Chameleon Cache: Approximating Fully As-
sociative Caches with Random Replacement to Prevent Contention-
Based Cache Attacks. In: IEEE International Symposium on Secure
and Private Execution Environment Design (SEED). IEEE. 2022
(pp. 29, 31).

[170] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security. 2018 (pp. 4, 5, 8, 22, 37).

[171] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(pp. 3, 5, 8, 22, 23).

[172] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU Inter-
rupt Logic. In: CCS. 2018 (p. 5).

58

[173] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control.
In: Workshop on System Software for Trusted Execution. 2017
(p. 5).

[174] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens,
and Raoul Strackx. Telling Your Secrets Without Page Faults:
Stealthy Page Table-Based Attacks on Enclaved Execution. In:
USENIX Security. 2017 (p. 5).

[175] Wim Van Eck. Electromagnetic radiation from video display units:
An eavesdropping risk? In: Computers & Security 4.4 (1985),
pp. 269–286 (p. 3).

[176] Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of
Finding Eviction Sets. In: S&P. 2019 (pp. 18, 34).

[177] W3C. WebGPU. 2023. url: https://www.w3.org/TR/webgpu
(p. 6).

[178] W3C. WebGPU - W3C Working Draft - Timing attacks. 2023. url:
https://www.w3.org/TR/webgpu/#security-timing (p. 6).

[179] Jack Wampler, Ian Martiny, and Eric Wustrow. ExSpectre: Hiding
Malware in Speculative Execution. In: NDSS. 2019 (p. 4).

[180] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers,
and G Edward Suh. SecDCP: secure dynamic cache partitioning
for efficient timing channel protection. In: Design Automation
Conference (DAC). 2016 (pp. 27, 29).

[181] Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav
Shacham, Christopher W. Fletcher, and David Kohlbrenner.
Hertzbleed: Turning Power Side-Channel Attacks Into Remote
Timing Attacks on x86. In: USENIX Security. 2022 (pp. 3, 9).

[182] Zhenghong Wang and Ruby B. Lee. A Novel Cache Architecture
with Enhanced Performance and Security. In: MICRO. 2008 (pp. 29,
30).

[183] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In: ACM SIGARCH
Computer Architecture News 35.2 (2007), p. 494 (pp. 25, 26, 29,
30).

59

https://www.w3.org/TR/webgpu
https://www.w3.org/TR/webgpu/#security-timing

References

[184] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas
F Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Vir-
tual Memory Abstraction with Transient Out-of-Order Execution.
2018. url: https://foreshadowattack.eu/foreshadow-NG.pdf
(pp. 4, 8, 37).

[185] Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Poly-
chronakis, and Fabian Monrose. The severest of them all: Inference
attacks against secure virtual enclaves. In: AsiaCCS. 2019 (p. 20).

[186] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In: USENIX
Security. 2019 (pp. 6, 9, 29, 41).

[187] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas
Eisenbarth. SEVurity: No Security Without Integrity–Breaking
Integrity-Free Memory Encryption with Minimal Assumptions. In:
S&P. 2020 (p. 20).

[188] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Oper-
ating Systems. In: S&P. 2015 (p. 5).

[189] Zihan Xue, Jinchi Han, and Wei Song. CTPP: A fast and Stealth
Algorithm for Searching Eviction Sets on Intel Processors. In: RAID.
2023 (p. 35).

[190] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison,
Christopher W. Fletcher, and Josep Torrellas. InvisiSpec: Making
Speculative Execution Invisible in the Cache Hierarchy. In: MICRO.
2018 (p. 39).

[191] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Tor-
rellas. Secure hierarchy-aware cache replacement policy (SHARP):
Defending against cache-based side channel attacks. In: ISCA. 2017
(pp. 29, 32).

[192] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories,
not caches: Side channel attacks in a non-inclusive world. In: S&P.
2019 (pp. 16, 18, 36).

[193] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security. 2014 (pp. 4, 18).

60

https://foreshadowattack.eu/foreshadow-NG.pdf

[194] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot
Heiser. Mapping the Intel Last-Level Cache. In: Cryptology ePrint
Archive, Report 2015/905 (2015) (p. 16).

[195] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbrenner, and
Christopher W Fletcher. Synchronization Storage Channels (S2C):
Timer-less Cache Side-Channel Attacks on the Apple M1 via Hard-
ware Synchronization Instructions. In: USENIX Security. 2023
(p. 36).

[196] Danfeng Zhang, Yao Wang, G Edward Suh, and Andrew C Myers.
A hardware design language for timing-sensitive information-flow
security. In: ACM SIGPLAN Notices 50.4 (2015), pp. 503–516
(pp. 27, 29).

[197] Ruiyi Zhang, CISPA Helmholtz Center, Lukas Gerlach, Daniel
Weber, Lorenz Hetterich, Youheng Lü, Andreas Kogler, and Michael
Schwarz. CacheWarp: Software-based Fault Injection using Selective
State Reset. In: USENIX Security. 2024 (p. 42).

[198] Xingjian Zhang, Haochen Gong, Rui Chang, and Yajin Zhou. RE-
CAST: Mitigating Conflict-Based Cache Attacks Through Fine-
Grained Dynamic Mapping. In: IEEE Transactions on Information
Forensics and Security (2024) (pp. 29, 30).

[199] Zirui Neil Zhao, Adam Morrison, Christopher W Fletcher, and
Josep Torrellas. Untangle: A Principled Framework to Design Low-
Leakage, High-Performance Dynamic Partitioning Schemes. In:
ASPLOS. 2023 (p. 28).

61

Part II

Publications

63

List of Publications

During my PhD, I contributed to 9 publications, 8 of which appeared in
conference proceedings, and 5 of which are included in this thesis as my
first-author publications, as shown below.

Publications in this Thesis

1. Lukas Giner, Roland Czerny, Simon Lammer, Aaron Giner, Paul
Gollob, Jonas Juffinger, and Daniel Gruss. Fast and Efficient Secure
L1 Caches for SMT. In: ARES. 2025.

2. Lukas Giner, Sudheendra Raghav Neela, and Daniel Gruss. Co-
here+Reload: Re-enabling High-Resolution Cache Attacks on AMD
SEV-SNP. In: DIMVA. 2025.

3. Lukas Giner, Roland Czerny, Christoph Gruber, Fabian Rauscher,
Andreas Kogler, Daniel De Almeida Braga, and Daniel Gruss. Generic
and Automated Drive-by GPU Cache Attacks from the Browser. In:
AsiaCCS. 2024.

4. Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder,
Thomas Unterluggauer, Stefan Mangard, and Daniel Gruss. Scatter and
Split Securely: Defeating Cache Contention and Occupancy Attacks.
In: USENIX Security. 2023.

5. Lukas Giner, Andreas Kogler, Claudio Canella, Michael Schwarz, and
Daniel Gruss. Repurposing Segmentation as a Practical LVI-NULL
Mitigation in SGX. In: USENIX Security. 2022.

Other Contributions

1. Lukas Maar, Lukas Giner, Daniel Gruss, and Stefan Mangard. When
Good Kernel Defenses Go Bad: Reliable and Stable Kernel Exploits
via Defense-Amplified TLB Side-Channel Leaks. In: USENIX Security.
2025.

65

2. Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Mar-
tin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard.
Collide+Power: Leaking Inaccessible Data with Software-based Power
Side Channels. In: USENIX Security. 2023.

3. Claudio Canella, Andreas Kogler, Lukas Giner, Daniel Gruss, and
Michael Schwarz. Domain Page-Table Isolation. In: arXiv:2111.10876.
2021.

4. Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede.
Systematic Analysis of Randomization-based Protected Cache Archi-
tectures. In: S&P. 2021.

5. Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
Data on Meltdown-resistant CPUs. In: CCS. 2019.

6. Michael Schwarz, Claudio Canella, Lukas Giner, and Daniel Gruss.
Store-to-Leak Forwarding: Leaking Data on Meltdown-resistant CPUs.
In: arXiv:1905.05725. 2019.

7. Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. ScatterCache: Thwarting Cache
Attacks via Cache Set Randomization. In: USENIX Security. 2019.

8. Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay Römer.
Hello from the Other Side: SSH over Robust Cache Covert Channels
in the Cloud. In: NDSS. 2017.

66

5
Cohere+Reload: Re-enabling

High-Resolution Cache Attacks on
AMD SEV-SNP

Publication Data

Lukas Giner, Sudheendra Raghav Neela, and Daniel Gruss.
Cohere+Reload: Re-enabling High-Resolution Cache Attacks on AMD
SEV-SNP. In: DIMVA. 2025

Contributions

Main author.

67

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

Cohere+Reload: Re-enabling High-Resolution
Cache Attacks on AMD SEV-SNP

Lukas Giner, Sudheendra Raghav Neela, and Daniel Gruss

Graz University of Technology

Abstract

Confidential computing platforms, e.g., AMD SEV-SNP, allow running
mutually distrusting workloads on the same hardware with the protection
of several isolation mechanisms: data is encrypted in RAM, and access
to unencrypted data is architecturally prevented. Furthermore, access
and cache line operations are restricted, mitigating attacks like Flush+
Reload. The hypervisor can access the encrypted data of virtual machines,
e.g., for migration purposes. This creates a coherency challenge around
modifications between encrypted and decrypted cache lines. AMD enforces
coherency between these two cache lines by removing one when the other
is accessed.

In this paper, we present Cohere+Reload, a novel side-channel attack
exploiting AMD’s coherency for encrypted memory. We discover two
types of leakage in the coherency mechanism: First, coherence conflicts
leak victim operations on a spatial granularity of a 2 kB block. Second,
the timing correlates with number and location of accesses the victim
performed within the confidential virtual machine, allowing to infer how
often or where within a coherence partition victim accesses were performed,
with a maximum spatial resolution of 256 bytes. We evaluate Cohere+
Reload in two synthetic and two real-world attacks: In synthetic attacks,
we demonstrate that Cohere+Reload can observe the control flow and
access locations in workloads within a confidential virtual machine. We
present a real-world attack on mbedTLS RSA, leaking 4096 key bits in
a single-trace attack, with 99.7% of bits correct. We present another
real-world attack on OpenSSL AES exploiting disalignments on a cache
line granularity: In a first round T-table attack we achieve an accuracy
of 100% in only 1500 encryptions and with a novel correlation attack an
accuracy of 92.81% in 12000 encryptions. We conclude that the coherence
approach for AMD SEV-SNP should be re-evaluated and discuss further
potential mitigations.

68

1 Introduction

1 Introduction

Modern processors have a multi-layered memory hierarchy for data, includ-
ing code. Data can reside in registers, in cache lines in L1, L2, or L3 cache,
or in the RAM. Some processors have even further cache layers, e.g., an L4
cache. While caches are crucial for the performance of modern computers,
they also inherently introduce timing side channels that distinguish cached
from non-cached data.

The most widely known attacks are Prime+Probe [47] and Flush+
Reload [42]. Flush+Reload [42] works by constantly flushing a cache line
from the cache, using the processor’s flush instruction, and measuring
how long it takes to reload the cache line. Flushing a cache line requires
read access to the memory, e.g., read-only shared memory with the victim,
which is typically not available across virtual machines or in the context
of confidential computing. Prime+Probe does not require shared memory.
Prime+Probe [47] works by measuring how much time it takes to con-
stantly re-fill a specific cache set. If a victim access falls into the same
cache set, the timing increases.

Confidential computing is an emerging compute paradigm where a con-
fidential workload, running isolated inside a virtual machine, is isolated
from all other workloads and from the host. More specifically, it is part of
the threat model that the hypervisor can be malicious or compromised but
the confidential virtual machine remains secure. Confidential computing
platforms, e.g., Intel TDX and AMD SEV-SNP, still share the underly-
ing hardware across mutually distrusting workloads running in virtual
machines. However, vendors introduced several isolation mechanisms to
protect workloads: For instance, data is encrypted in RAM, decrypted
on-the-fly when moved into the caches, and the processor prevents direct
access to unencrypted data in caches or registers. The hypervisor cannot
access unencrypted memory of the confidential virtual machine. Further-
more, cache line operations are restricted, mitigating attacks like Flush+
Reload.

Despite the strong isolation, some functionality requires access from the
hypervisor to the encrypted data, e.g., migration of virtual machines in
the cloud. Consequently, the hypervisor can access the encrypted data of
virtual machines. However, this implies that data can be in the caches twice:
once encrypted for the host, and once unencrypted for the confidential
virtual machine. Clearly, this creates a coherency challenge as a virtual

69

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

machine may modify a cache line, i.e., the cache contains a modified
unencrypted cache line and an outdated encrypted cache line. Google
reported that there is a coherency mechanism on Intel TDX [11] for this
purpose, where accesses with one key flush all other copies of the address
with different keys from the cache. AMD pursued a similar approach by
enforcing coherency between the unencrypted and encrypted cache lines
by removing one when the other is accessed. Still, AMD does not operate
on the granularity of a cache line, as we show in this work.

In this paper, we present Cohere+Reload, a novel attack exploiting that
AMD’s coherency approach introduces a surprisingly powerful side chan-
nel. We thoroughly analyze AMD’s coherence mechanism for encrypted
memory and discover two properties that form the basis of our Cohere+
Reload attack: First, there is a significant timing difference between cache
misses and coherence conflicts on a spatial granularity of a 2 kB coherence
partition, i.e., half a page. This timing difference directly reveals whether
a victim confidential virtual machine just accessed a specific memory
location. Second, the amplitude of the timing coarsely correlates with the
number of accesses the victim performed. It is also more finely correlated
with the location of single victim accesses, allowing to infer which out
of 8 alignments within a coherence partition the victim access had, i.e.,
we have a maximum spatial resolution of 256 bytes, which is in the same
order of magnitude as Flush+Reload with a spatial resolution of 64 bytes.

We evaluate Cohere+Reload in two synthetic and two real-world attacks:
The two synthetic attacks demonstrate that Cohere+Reload can observe
the control flow in workloads within a confidential virtual machine, i.e.,
identify the target of a jump; and that Cohere+Reload can observe which
data locations a workload within a confidential virtual machine accessed,
naturally within the limits of the spatial resolution of Cohere+Reload. We
present an attack on mbedTLS RSA-4096 and show that we can leak all
4096 key bits in a single-trace attack, with a Levenshtein distance of less
than 11 bits on average. Finally, we present a novel attack on OpenSSL
AES that exploits disalignments on a cache line granularity. Based on
this insight, we mount a first round attack with and accuracy of 100%
in only 1500 encryptions. We recover all upper nibbles of AES with a
novel correlation attack with an accuracy of 92.81% in 12000 encryptions.
We conclude that the coherence approach for AMD SEV-SNP should be
re-evaluated and discuss further potential mitigations.

Disclosure. We disclosed our results to AMD, who addressed our findings
in security bulletin AMD-SB-3010.

70

2 Background

Contributions. In summary, our main contributions are:

• We introduce Cohere+Reload, a novel attack exploiting that AMD’s
coherency with a spatial granularity of a 2 kB per coherence partition,
and 8 distinguishable alignments within a partition, yielding a maximum
spatial resolution that is on par with Flush+Reload.

• We evaluate Cohere+Reload in two synthetic attacks demonstrating
that we can leak control flow and data access from a confidential virtual
machine on AMD SEV-SNP.

• We present an attack on mbedTLS RSA-4096 and show that we can leak
all 4096 key bits in a single-trace attack, with a Levenshtein distance of
less than 11 bits on average.

• We present a novel attack on OpenSSL AES that exploits disalignments
on a cache line granularity, yielding an accuracy of 100% in only 1500
encryptions in a first-round attack and an accuracy of 92.81% in 12000
encryptions in a novel correlation attack.

Outline. We provide background in Section 2. We define our threat model
in Section 3. We present our novel Cohere+Reload attack in Section 4.
We template target pages in Section 5. We present an attack on mbedTLS
RSA in Section 6 and an attack on OpenSSL AES T-Tables in Section 7.
We present an attack on control flow and data accesses in Section 8. We
discuss potential mitigations in Section 9 and conclude in Section 10.

2 Background

In this section, we provide background on trusted-execution environments,
side-channel attacks, and coherence in the context of memory encryption.

2.1 Trusted-Execution Environments

The goal of trusted-execution environments (TEEs) is to provide confiden-
tiality and integrity for code and data on a system even on a compromised
system [6, 8, 9, 19]. Older TEEs often focus on personal and mobile com-
puters, e.g., Intel Software Guard Extensions (SGX) [8]. The TEE runs a
small trusted workload in a signed enclave [8]. These enclaves run on the
same CPU as regular applications. To prevent access from a compromised
host system, SGX prevents access to the encrypted enclave memory and
register state.

71

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

More recent TEEs focus on cloud use cases and virtual machines (VMs).
Instead of protecting a small workload, the idea is to move entire VMs into
the TEE, which are then called confidential virtual machines (CVMs) and
protect them from a malicious or compromised host [13], e.g., AMD Secure
Encrypted Virtualization (SEV) [4] and Intel Trust Domain Extensions
(TDX) [15].

AMD SEV protects memory contents of CVMs by encrypting any data
moved out of the CPU, e.g., to DRAM or disk [37]. Still, there are many
attacks on SEV. In particular the basic SEV design was demonstrated to
provide too little protection for the guest state [26, 33] and memory [21,
28, 32, 33]. AMD addressed this issue with with the Encrypted State (ES)
and Secure Nested Paging (SNP) SEV extensions, protecting guest state
and memory integrity.

Like AMD SEV-SNP, Intel supports CVMs through their Trust Domain
Extensions (TDX) [9]. Guest memory and state are encrypted and managed
by the TEE. The host can only interact with the guest through well-defined
secure interfaces. For fast inter-process communication, the memory has
both private encrypted parts and shared parts that are equally accessible
to the host.

2.2 Side-Channel Attacks

Side channels can be used to attack systems even if there are no software
or hardware vulnerabilities or they are not known. Side channels instead
exploit side effects of the implementation such as timing [51], power con-
sumption [50], or radiation [49]. Older works focused on cryptographic
primitives [30, 48, 51], leaking keys of vulnerable cryptographic imple-
mentations of e.g., AES [47, 48], RSA [30, 42], or ECDSA [41]. More
recent works often focus on larger systems to leak information from one
system component, e.g., kernel information [43], user input [27, 39, 45],
and system activity [23].

Many side-channel attacks target caches as they can be probed without
privileges at a high temporal (i.e., nanosecond to microsecond range)
and spatial resolution (i.e., 64B) while being comparably robust against
noise. Most importantly, they allow for use generic attacks that are not
tailored to specific applications and victim programs. Consequently, the
community developed a set of generic attack techniques that follow a
uniform naming pattern based on the attack components, e.g., Prime+

72

2 Background

Probe and Flush+Reload. One of the first generic attack techniques was
Evict+Time [47], in which an attacker runs and times a victim process
twice, once with evicting a target cache line from the cache by performing
a larger number of memory accesses that collide in the cache, e.g., due
to set associativity, and once without. A statistically higher execution
time means the cache line was used by the victim. Instead of timing
the victim, Prime+Probe [47] times the (evicting) memory accesses, i.e.,
they time how long it takes to (re-)prime a cache set. If it takes more
time, more cache lines were replaced by the victim execution. Prime+
Probe is one of the most widely used attack techniques besides Flush+
Reload [42]. In the Flush+Reload attack, an attacker flushes a cache line
using a dedicated flush instruction, and measures the time it takes to
reload the memory location in order to decide whether or not the victim
used it. Variations of Flush+Reload include Evict+Reload [38], which
substitutes eviction for flushing, and Flush+Flush [36], which measures
the timing of the flush instruction instead of the reload, thereby revealing
a similar timing difference. Similarly, for Prime+Probe, several attack
techniques and variations have been presented more recently, such as
Prime+Abort [31], Prime+Scope [17], and Spec-o-Scope [7].

2.3 Coherence Between Ciphertext and Plaintext

Modern CPUs feature memory encryption technology, such as Intel’s Total
Memory Encryption (TME) [2] and AMD’s Secure Memory Encryption
(SME) [37]. Memory encryption is a crucial aspect of trusted execution
environments, including Intel TDX and AMD SEV, designed to safeguard
sensitive data. These built-in memory encryption systems encrypt data
before it is written to the main memory and decrypt it when loaded into
the CPU caches.

Given the nature of trusted computing, the untrusted hypervisor must
interact with ciphertexts to facilitate operations such as migrating the
guest machine to another server. To enable direct access to encrypted data,
AMD’s encryption unit includes a short-circuit path that forwards the
data without decrypting it. Each data access’s physical address encodes a
so-called encrypted bit (C-bit), which indicates whether this short-circuit
path should be utilized. This leads to an important question: how is
coherence maintained when the hypervisor actively requests ciphertext
while the guest is processing plaintext?

73

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

AMD states that coherency between the ciphertext and plaintext depends
on the hardware [5] as some hardware enforce coherency while others
do not. In the systems where coherence is not enforced, the hypervisor
must flush the encrypted data from all CPU caches. In other systems,
hardware supports coherency across encryption domains and software
does not have to flush encrypted data, and the presence of this feature
can be determined by the CPUID bit “CoherencyEnforced” (see AMD
Architecture Programmer’s Manual [5], 7.10.6).

In our systems, all AMD EPYC CPUs support SEV-SNP and include
this coherence feature. Consumer Ryzen CPUs only support SME [24]
without automatic hardware coherence between ciphertext and plaintext.
For SEV systems without SNP, not having hardware coherence poses
significant risks, allowing potential fault-attack-like exploitation during
the write-back of ciphertext.

With the introduction of AMD SEV-SNP, the hypervisor can no longer
directly write to an encrypted page [19]. Each guest page undergoes a
procedure to assign it in a reverse page map, indicating its ownership to a
given guest VM. Once a guest accepts a page, the hypervisor retains only
read access, which is ciphertext. Despite these advancements, maintaining
coherence between ciphertext and plaintext remains essential. On Intel
TDX, it is known that accesses to a ciphertext flushes all other copies
of the address from the cache [11]. In Section 4, we present our initial
analysis of how coherence is managed on AMD systems.

3 Threat Model

Exploiting the Cohere+Reload mechanism requires a ciphertext view and
a plaintext view on the same memory region. Outside of SME, this can
only happen when a hypervisor maps an SEV guest page (ciphertext view),
as guests have no option to map pages outside their allocated memory.
Our threat model is therefore a malicious hypervisor trying to extract
information from an encrypted SEV, SEV-ES or SEV-SNP guest. In this
scenario, the hypervisor has control over all parts of the CPU that are not
part of the attestation. This includes control over CPU frequency, disabling
hardware prefetching and selecting a suitable DRAM interleaving setting
at boot (see Section 4.1). While Cohere+Reload attacks can be performed
even without stabilizing the frequency or disabling prefetching, like many

74

4 Cohere+Reload

Table 5.1: Test systems.

CPU Architecture SME HW Coherence SEV VM page flush MSR

2x AMD EPYC 7443 Zen 3 ✓ ✓ SNP ✓
AMD EPYC 7313P Zen 3 ✓ ✓ SNP ✓
AMD EPYC 8024P Zen 4c ✓ ✓ SNP X

cache attacks [10, 18, 22, 25, 34], it is simplified by these settings and they
will be used throughout the paper.

4 Cohere+Reload

In this section we examine the behaviour of coherence for AMD memory
encryption. In all of our tests, hardware cache coherence works the same in
SME as it does in SEV, SEV-ES or SEV-SNP. Therefore we will conduct
all basic experiments in SME for simplicity, unless specifically mentioned.

As a first step, we configure our systems (cf. Table 5.1) for transparent
secure memory encryption (TSME). This means all pages will be encrypted
by default, denoted by a bit in the physical address, e.g., bit 51. To get a
ciphertext view of a page, we create a second mapping where this bit is not
set. When we now measure access times to a cache line in the ciphertext
mapping, we can clearly distinguish three cases: hits, misses and coherence
conflicts (see Figure 5.1). We cause a normal miss by flushing the line
with clflush before measuring it, and a coherence conflict by accessing
the same line in the plaintext mapping. We attribute the latency increase
to the fact that when there is a plaintext line to evict, this has to happen
before the load is completed, to ensure coherency. We also observe, as
expected, that this effect is entirely symmetrical; it does not matter which
mapping is used as the observer. The coherence also holds for code pages
that were cached through code execution.

This basic hit/conflict behaviour constitutes the first part of the Cohere+
Reload primitive (see Section 4.2 for the second).

4.1 Eviction Pattern

Contrary to Intel TDX, AMD memory encryption does not enforce its co-
herence with single line granularity. Instead, we find that any access always

75

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

100 150 200 250 300 350 400 450 500 550 600
0

5 · 105

1 · 106

rdpru [cycles]

sa
m
p
le
s hit miss

coherence conflict

Figure 5.1: Access timing histogram for accesses that are hits, misses (flushed)
or conflicts caused by SME coherence.

Table 5.2: DRAM interleaving size and coherence pattern block size on our two
systems.

DRAM interleaving setting off 256 512 1024 2048 4096

block size EPYC 7443 2048 256 512 1024 2048 256
block size EPYC 7313P 2048 256 512 2048 2048 256

triggers the eviction of 32 out of 64 cache lines on a 4 kB aligned section
of memory. We notice that in all of our machines’ default configurations,
the page is not simple split into two contiguous 2 048B halves, but instead
shows an alternating pattern of 256 byte (4 cache lines) coherence blocks
between the two coherence partitions (see Figure 5.2a). Concretely, this
means that an access to one or multiple plaintext (or ciphertext) addresses
in the first (or second) coherence partition of a page will always trigger an
eviction of all ciphertext (or plaintext) addresses in the first (or second)
partition of a page. This limits the channel’s spatial resolution compared to
Flush+Reload, though it speeds up page profiling (see Section 5). We run
this experiment on different physical and virtual pages, different page sizes
(4 kB and 2MB) and between different cores. We find that the pictured
pattern is always the same. However, two of our machines’ (EPYC 7443
and EPYC 7313P) mainboard menus expose a boot setting for “DRAM
interleaving size”. When we change it from its default of 256B to 512B,
1 024B or 2 048B, we can see the coherence eviction pattern changing to
match (see Figure 5.2), except for “off”, 1 024B in the case of the EPYC
7443 system, and 4 096B (Table 5.2). While we do not know why the
coherence mechanism is implemented as it is, we suspect some form of
load balancing consideration w.r.t. DRAM.

76

4 Cohere+Reload

0
0

32

64

96

128

32 64 96 128

Plaintext Line

C
ip
h
er
te
x
t
L
in
e

(a) 256B

0 32 64 96 128

Plaintext Line

(b) 512B

0 32 64 96 128

Plaintext Line

(c) 1024B

0 32 64 96 128

Plaintext Line

(d) 2048B

Figure 5.2: Eviction Pattern for different DRAM interleaving size setting over
8 kB physically contiguous memory. A plaintext cache line is evicted
by (and evicts) all corresponding ciphertext cache lines in black.

4.2 Access Delay Time

Since we have seen in Section 4 that the presence of a single plaintext
cache line increases the access time for a ciphertext line in the same
coherence partition, it stands to reason that more cache lines in the same
partition might take even longer to evict. Indeed, we find that the access
delay on the evicting party’s side is related to the number of accessed
lines in the coherence partition. When we access from 0 to 32 lines of
plaintext in the same coherence partition and measure a ciphertext access,
we see a monotonically increasing access time (Figure 5.3a). But we do
not observe a strictly monotonic increase, instead we see plateaus every 4
cache lines. When we look at the individual distribution of access times for
each number of accesses (Figure 5.3c), these groupings are visible. The first
three access groupings are somewhat separated (that is, measuring after
1,2 or 3 accessed lines), but from then on there are quartets of consecutive
numbers of accesses that display very similar access times.

Investigating further, we can see that Figure 5.3a and Figure 5.3c are
actually a special case of timings when the accessed cache lines are con-
tiguous, i.e., we do not skip lines within a coherence partition up to
our chosen number of accesses. Measuring the ciphertext access times
for single plaintext evictions of different plaintexts we find the cause of
this behaviour: different offsets within a coherence block have distinct
timings. As Figure 5.3b shows, when there is only one plaintext access in
the coherence domain the access time of the ciphertext depends on the
position of the plaintext access within the coherence block and repeats
from block to block. This means that while on average a higher number

77

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

0 10 20 30

900

1,000

1,100

accessed cache lines

ac
ce
ss

ti
m
e
[c
y
cl
es
]

(a) Average access time for n plaintext
accesses in coherence partition.

0 10 20 30
520

540

560

accessed cache line

ac
ce
ss

ti
m
e
[c
y
cl
es
]

Core 0 Core 1

(b) Average access time for one plain-
text access at position n in parti-
tion.

900 925 950 975 1,000 1,025 1,050 1,075
0

200

400

1100

access time [cycles]

o
cc
u
ra
n
ce

(c) 32 histograms of access times for n = 1 to 32 plaintext accesses. Certain
numbers of accesses have very similar timing distributions.

Figure 5.3: Ciphertext conflict access times for different numbers of prior plaintext
accesses on congurent adresses. Which addresses and how many where
accessed changes the conflict eviction time.

of accessed cache lines within a partition will increase the conflict eviction
time, some combinations of lines will lead to far higher delays than others.
This pattern depends on the core number within a core complex that
loaded the plaintext address, but is the same between core complexes. We
believe the pattern comes from the topology of the core complexes. When
the block size is increased, the timing pattern also expands, though only
up to 8 lines. For pattern sizes of 1 024B and larger, the pattern begins
to repeat after 512B, i.e., 8 cache lines.

This timing behaviour is the second aspect of the Cohere+Reload primitive.
We will further explore this effect in an attack in section Section 7.2.

78

4 Cohere+Reload

Table 5.3: Comparison of Cohere+Reload with Flush+Reload and Flush+Flush.

Flush+Reload Flush+Flush Cohere+Reload

System
Hits Misses Blind Spots Hits Misses Blind Spots Conflict Hit Blind Spots

[cycles] [cycles] [%] [cycles] [cycles] [%] [cycles] [cycles] [%]

EPYC 7443
122
σ=13

389
σ=130

65.1%
482
σ=96

367
σ=90

3.2%
428
σ=103

125
σ=130

0.06%

EPYC 7313P
150
σ=0

658
σ=173

73.2%
833
σ=124

632
σ=31

3.5%
800
σ=167

151
σ=0

0.53%

EPYC 8024P
145
σ=0

497
σ=117

74.8%
623
σ=92

484
σ=59

1.6%
623
σ=131

146
σ=1

0.02%

We compare Cohere+Reload with Flush+Reload and Flush+Flush across
three metrics: hit time, miss/conflict time, and blind spots. The measure-
ment for all three metrics is repeated 100 000 times on each system on
different physical cores. Cohere+Reload has a much smaller blind-spot
size and comparable hit and conflict times.

4.3 Cohere+Reload Compared to Other Cache Attacks

In this section, we compare Cohere+Reload with two cache attacks: Flush+
Reload and Flush+Flush. Our results, presented in Table 5.3, show that
Cohere+Reload is a fast attack, comparable to the two Flush-based cache
attacks across three metrics: hit time, miss time (conflict time), and blind
spots. Using the methodology presented in prior work [3], we measure each
metric 100 000 times on three systems: 2x EPYC 7443 (Zen 3), EPYC
7313P (Zen 3), and EPYC 8024P (Zen 4c). We disabled the hardware
prefetchers and fixed the frequency on all three machines. To measure
the metrics, we spawn two threads on different physical cores: a victim
thread which randomly accesses a predetermined memory location, and
an attacking thread that mounts the attack, measuring the metric.

On all three systems, we notice that Flush+Reload has a large blind spot
— between 65-75% of victim accesses were missed by the attacker. Flush+
Flush has a much smaller blind spot, with only 1.5-3.5% of victim accesses
being missed by the attacker. Cohere+Reload has a minuscule blind spot,
with less than 0.5% of victim accesses being missed by the attacker.

To measure the attack time, we consider both the hit and miss (conflict)
timings. We see that the hit timings of Cohere+Reload are comparable to
the hits of Flush+Reload, and the conflict timings of Cohere+Reload are
comparable to Flush+Flush. This shows that Cohere+Reload is as fast as
comparable attacks with a much smaller blind spot size, making it a very
reliable side-channel attack.

79

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

5 Target Page Templating

In a standard SEV-SNP scenario, the host has no knowledge about where
the guest maps which data in its virtual memory range. For an attack,
the first step is therefore to locate pages of interest in the guest. The
same result could be achieved with page access flags, though this is an
alternative approach that does not require the flushing of TLB entries. The
only requirement for this step is that a victim page access can be reliably
triggered (e.g., establishing a connection that causes an RSA encryption).

We implement this for RSA by using a network call to the guest that
triggers an encryption. In our test, we filter 4GB of VM virtual memory
with a sieve of sorts. Starting with all pages, we repeatedly cause the guest
to access or not access the page of interest while measuring each page from
different core with Cohere+Reload. We access each page with a single
split load to detect coherence eviction in both coherence partitions at
once, as we find that the penalty for accessing both partitions is only ≈ 30
cycles. Pages that do not show the expected hits or conflicts are discarded
from the list and the next step operates on the reduced list. After only
4 sieve steps, 1 048 510 pages can be reduced to an average of 7.36 pages
in 10.6 s in 100 experiments, with the two RSA pages of interest always
being among them. Finding the correct page from there is trivial, as only
those two pages show the expected access pattern during an encryption
(see Section 6).

6 High Frequency Code Attack - RSA

We attack the square-and-multiply mbedtls mpi exp mod implementation
of RSA in Mbed-TLS v3.0.0. For the purposes of this demonstration, we
configure it to use a maximum window size of 1. While the specific version
is not crucial as long as the algorithm is the same, note that because of the
coherence pattern, Cohere+Reload requires a suitable code layout. That
is, the code that can be attacked needs to be aligned suitable within a
coherence partition, while code that would hinder the attack needs to fall
into the other partition. In this example, we find that a 256B pattern is
unsuitable, but switching to a 512B pattern with the DRAM interleaving
setting results in a working attack.

Our victim is an RSA encryption service in an SEV-SNP guest triggered
by the attacker, which runs on the host. For the attack, the host program

80

6 High Frequency Code Attack - RSA

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·106

200

400

600

800

1,000

descheduledhit threshold

timestamp [cycles]

ac
ce
ss

ti
m
e
[c
y
cl
es
]

exponentiation multiplication

Figure 5.4: Part of a raw Cohere+Reload trace of an RSA encryption. When
exponentiation shows a conflict, a new exponentiation loop was started.
When multiplication shows many in a row, the victim was most likely
descheduled.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·106

0

500

1,000

1,500

·102

classification threshold

double detection

timestamp [cycles]∆
b
et
w
ee
n
h
it
s
[c
y
cl
es
]

exponentiation

Figure 5.5: Time difference between hits on exponentiation. The two bands show
where a multiplication was executed (large difference) and the key
bit is 1 or where it was not and the bit is 0 (small difference).

records traces of two code locations. First, the second partition in the
mpi exp mod function. This contains the beginning of the loop that iterates
over each key bit. Second, we trace the mpi montmul function that does
the squaring and multiplication operations. Our attack traces starts when
the mpi exp mod is called for the first time and records long enough to
capture the entire encryption (240000 samples). Figure 5.4 shows a section
of such a trace. The mpi exp mod signal (blue) carries most of the key
information, as it ideally detects an eviction precisely once per processed
bit. This lets us infer whether or not mpi montmul was called in addition
to the square function (indicating that the key bit was 1) by the time
delay to the next detection. The time difference between two conflicts
in this signal is about twice as long when a ‘1’ bit is processed. While
this alone allows us to recover most of the key, we can correct some

81

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

5 10 15 20
0

5

10

15

Levenshtein distance [bit]

O
cc
u
rr
en

ce
[%

]
Figure 5.6: The Levenshtein distances

in bit for 100 single-trace
RSA 4 096 bit key recovery
attacks.

mistakes with the signal in mpi montmul (pink). As the algorithm spends
most of its time in this function, we detect almost all conflicts. However,
when the algorithm is paused for any reason (e.g., scheduling), we see
periods of hits on this address that we can then use to correct the primary
signal. Figure 5.4 shows one occurance of this near the end. In minor
post-processing we also detect the precise start and end of the encryption
and remove double detections for single bits that are too close together
(see Figure 5.5). Over 100 runs, our attack recovers randomly generated
4 096 bit keys with a Levenshtein distance of 10.7 ± 3.94 (µ, σ) with a
single trace (see Figure 5.6). In terms of attack performance, this is on
par with related works attacking RSA [1, 12, 14, 20, 35].

7 AES T-Tables

In this section, we evaluate Cohere+Reload on the AES T-table implemen-
tation of OpenSSLv3.4 with 128 bit keys. Specifically, the AES encrypt

function which uses T-tables in lieu of hardware support (i.e., AES-NI).
Similar to the RSA attack (Section 6), we choose this implementation as
it has been used extensively to evaluate prior side-channel attacks and is
therefore a well-understood attack target [1, 12, 14, 16, 20, 29, 35].

The well-known first- and last-round attacks on AES T-tables [40, 46, 48]
are both based on access probabilities. For a first-round cache attack, each
of the four T-tables’ cache lines (16 per table with 16 entries each) are
measured as hits or conflicts after an entire encryption. As an encryption
consists of 40 total accesses to each table (10 rounds with each 4 accesses),
over a sufficient number of random plaintexts the probability for each line
to be accessed at the end of an encryption is 1− 15

16

40
= 92.43%. This can

be distinguished from lines that are always accessed. In the first round of
the encryption, the tables are accessed according to the result of Pn ⊕Kn,
where Kn is byte n in the original key and P is the plaintext. Fixing one

82

7 AES T-Tables

0x0
0x140

0x1000
0x1140

512B Pattern

256B Pattern

T-tables

Partition 1

Partition 2

P4x,t ⊕ 0xf0 = K4xP4x+1,t ⊕K4x+1 =?P4x+3,t ⊕K4x+3 =?

Te3 Te2 Te1 Te0

Figure 5.7: AES T-table memory alignment in OpenSSL and memory coherence
partition patterns for 256B and 512B. Annotations show where first
round T-tables are accessed depending on the key- and plaintext bytes.
Te1 and Te3 demonstrate the 256B/512B patterns respectively (only
1 pattern can be active for all memory for each system boot), and
Te0 shows the second partition on the next page.

plaintext byte therefore allows an attacker to control which line is always
accessed. After measuring enough encryptions, only this line will show no
conflicts, hence we can infer the upper nibble of each key byte.

The resolution of Cohere+Reload, however, is not a single cache line.
The partition size of half a page is simply not enough to perform this
attack merely by distinguishing hits from conflits, and even other tables
on the same page influence each other. Even if one performed enough
measurements to detect a non-accessed coherence partition (quite unlikely

with Paccessed = 1− 1
2

160
), this would only leak one bit per key byte.

However, we notice that while the default T-table placement in memory is
aligned to cache lines with default compilation options, it is not necessarily
aligned to a page. From this simple fact, we are able to conduct a limited
standard first-round attack (Section 7.1) as well as a novel variation on
the first-round attack based on a bias in the number of accessed cache
lines instead of their location (Section 7.2).

7.1 Disaligned T-Table First-Round Attack

For this first attack, we only look at table Te0, which deals with key/-
plaintext bytes 0,4,8 and 12 in the first round. As we can see in Figure 5.7
bottom right, Te0 spans 5 cache lines into a new page. For a Flush+Reload
attack, this would not make a difference, as the attack either works on

83

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

0x0 0x2 0x4 0x6 0x8 0xa 0xc 0xe

0

4

8

12

tested key nibble value

ke
y
b
y
te

0.9

0.95

1H
itra

te

Figure 5.8: Heatmap of conflicts in an AES disaligned T-table attack on key
bytes 0, 4, 8, 12 with a total of 1500 encryptions. Correct key nibbles
are 0x4, 0xb, 0xc and 0xa.

all cache lines or it does not work at all (e.g., because the target cannot
be accessed). For Cohere+Reload however, this enables an attack. With
a coherence pattern size of 256B, this means that the last line of Te0 is
the only one that accesses the second coherence partition on that page.
With this disalignment we can convert the Cohere+Reload primitive into
what is essentially a Flush+Reload primitive for this implementation, an
improvement in the same vein as the attack described by Spreitzer et al.
[44].

For random plaintexts, each cache line will be used by an encryption in
92% of cases. In our case, the second coherence partition of the second
page will measure this percentage for the last line of Te0. The T-table
access in the first round depends only on the XOR of the plaintext and
key bytes, e.g., Te0 = P{0,4,8,12} ⊕K{0,4,8,12}. As only an XOR product
of 0xf in the upper nibble accesses the measured partition, the correct
key nibble can thus be derived with (Px,t ⊕ 0xf0) ∧ 0xf0 = Kx for the test
plaintext byte Px,t for which Cohere+Reload shows a 100% hit ratio.

We can recover all upper nibbles for these 4 key bytes in 1500 encryptions
with 100% accuracy. Figure 5.8 shows a heatmap of one such attack with
a total of 1000 encryptions, clearly displaying the key correct key nibbles
0x4, 0xb, 0xc and 0xa.

7.2 First-Round Correlation Attack

For the standard T-table attack, we use the fact that there is a 92%
chance that any given cache line in a table will be accessed with a random

84

7 AES T-Tables

plaintext. We have established above that the spacial resolution of Cohere+
Reload is not enough to us this in a standard first-round cache attack.
However, we know each key- and plaintext byte combination accesses a
specific cache line with 100% certainty. This in turn means either the first
or second coherence partition will be accessed for each plaintext byte in the
first round. Looking at a single key byte at a time, we can easily calculate
a pattern of partition 1 and partition 2 accesses for each plaintext and
each key. Concretely, we can create a template vector for each possibly key
byte value of the form {0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0}. Each number
denotes the partition that Pn ⊕Kn will access, in this case for Kn = 0
and a pattern size of 256B. We can now pick a fixed plaintext and change
only one plaintext byte at a time and record the number of total accessed
cache lines in the T-tables that fall within the one of the partitions. With
this, we can now calculate the Pearson correlation coefficients between the
templates and the access count vector. The highest correlation will show
the template corresponding with the correct upper nibble of the tested
key byte.

When we generate the template vectors, we find that they contain a
different number of unique templates for the 256B and 512B coherence
patterns. Depending on the cache line offset within a page, there are at
most 8 unique templates for a 256B pattern and 16 for the 512B pattern.
This means for all odd cache line offsets of the T-tables, we can recover 3 or
4 bits per key byte, depending on the chosen pattern size. The pattern size
256B yields one bit less, since the disaligned coherence pattern within each
table repeats once (see Figure 5.7) and we can therefore not distinguish
the most significant bit.

While this attack benefits from chosen plaintexts (see above), a sufficient
number of (mostly) random known plaintexts will work just the same. By
adding the number of partition accesses to a bucket for each plaintext
byte value and for every byte of a random plaintext, each encryption
can contribute to the recovery of all 16 key bytes instead of just one.
With many encryptions, this creates a 16x16 matrix with one correlation
vector for each key byte. After enough encryptions, the bias in the average
number of accessed cache lines in a coherence partition outweighs the
initial noisiness of random plaintexts and the key bytes can be recovered.
Therefore we consider this a known-plaintext attack.

Cohere+Reload provides for two methods of measuring the number of
accesses. Firstly, the access time for a single read, as described in Sec-
tion 4.2. In theory, over enough measurements with randomized plaintexts,

85

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

200

400

600

800

1,000

hit threshold

timestamp [cycles]

ac
ce
ss

ti
m
e
[c
y
cl
es
]

partition 1 partition 2

Figure 5.9: Cohere+Reload access trace for a single AES encryption.

the average access time should provide a proxy measure for the number of
cache lines that were accessed within a partion. Unfortunately, we could
not make this method work with AES. Fortunately, we can make use of
the minimal blind spot and high frequency of Cohere+Reload and mount
a trace attack.

Unlike in the case of RSA, there is very little time between accesses to
the T-tables in the OpenSSL implementation. When we try to trace an
encryption normally, we only observe 10-15 accesses per partition, for
a total of ≈ 20 − 30 accesses out of the ≈ 135 expected accesses (less
than 160, as some accesses fall on the second page). Since in our threat
model (cf. Section 3) we are the hypervisor, we can however employ a
little trick to slow down our victim. Even in SEV-SNP, the hypervisor has
control over the bits in the page table entries, including the uncacheable
bit. We find that by making both the function code and the stash page
uncacheable, we can slow down our victim considerably. This allows us to
record around 100 total memory accesses for a single encryption, as we
can see in Figure 5.9. Though still shy of 160, we cannot reliably see all 16
individual accesses in the first round and infer the table accesses directly.
We can, however use the number of hits to the partitions as a proxy. Even
though some hits will contain two or more accesses, on average the number
of accesses in a partition will be biased by the first round. To reduce the
noise, we only look at the first 16 accesses to both partitions, and extract
the number of accesses to one of them as our signal. We choose 16 as it
is the upper limit to how many hits we can see within the first round,
and even if accesses from the second round are included, they only add
noise. We can see this signal plotted together with the correct template in

86

7 AES T-Tables

0 5 10 15
7.4

7.6

7.8

8

plaintext nibble

av
er
a
ge

ac
ce
ss
es

measured template

0

1

te
m
p
la
te

Figure 5.10: Correlation attack tem-
plate vector for key nib-
ble 0xa vs. average access
counts for correct key nib-
ble guess with 8000 en-
cryptions. ρ = 0.99.

0.5 1

·104

10

12

14

16

encryption traces

co
rr
ec
t
k
ey

n
ib
b
le
s

256B 1 256B 1+2

512B 1 512B 1+2

Figure 5.11: Average correct key nib-
bles for a given number
of AES traces for the top
guess (1) and the top 2
guesses combined (1+2).
n = 100 per point.

Figure 5.10. In this case, we achieve a very high correlation coefficient of
ρ = 0.99.

Figure 5.11 shows our results for both pattern sizes. We can see that
recovering 3 bits is more robust, as the templates are more different to
each other. With 4000 traces, we correctly recover 3 bit for an average
of 14.5 key bytes in our first guess. Adding second guesses, this rises to
15.3. Using the 512B pattern, we can recover an average of 14.85 nibbles
per byte with 12000 encryptions with first guesses and 15.4 when we also
include second guesses.

Since this is a correlation based attack, we can identify weakly correlating
key nibbles, or those where several candidates are close, and record more
traces only in these cases to minimize overall traces.

Tracing AES with this time resolution (without repeating encryptions) is
something we do not believe can be easily achieved across cores or even
sockets with other cache attacks like Flush+Reload or Flush+Flush, as
Cohere+Reload can monitor an entire page with only two addresses (cf.
Section 4.3). Though compared to the standard our attack takes longer
(e.g., Flush+Reload can work with only a few hundred to low thousands of
encryptions as shown in Section 7.1), it also has slight advantages. Firstly,
as a trace-based attack it is not hindered by software prefetching, as each
read resets the cache line. Secondly, this attack functions the same for
128 bit keys as it does for 192 bit or 256 bit keys, as the additional two or

87

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

four rounds do not affect the beginning of the attack, whereas for other
attacks the probabilities become less favorable.

8 Load-time based attacks

In Section 4.2, we observed that Cohere+Reload-timings to different cache
lines in the same coherence block have discernible timing differences, i.e.,
an attacker can conclude which cache line was accessed by measuring the
time taken to access a cache block. In this section, we use this observation
to mount two synthetic attacks: the first reveals which part of an array
is accessed while the second detects which case of a switch statement
is taken. We test these attacks on an AMD EPYC 8024P (Zen 4c) with
hardware-prefetching disabled.

Our experimental setup consists of two processes, an attacker and a victim,
which can access the same physical page as a ciphertext or plaintext
mapping respectively. This page is either a dynamically allocated array
storing values (the first attack), or it the victim’s code (the second attack).
We assume that the region of interest is one cache-block large (256B)
and assume that the physical address is aligned to this value. For the
attack on code execution, we ensure that each case of the switch is one
cache-line long and all four cases are within the same cache block. By
measuring the access time with Cohere+Reload, we can now infer which
line in a coherence block was accessed by the victim, which in turn can
let us infer control- or data flow. With the attack on code, a source of
noise is the (speculative) fetching of instructions from the next case by
the instruction prefetcher. To overcome this, we use the ret instruction
at the end of every case to indicate that the next set of instructions will
not be executed.

For the purposes of the experiment, the attacker and victim alternately
access the physical address. The attacker records the access times and the
victim accesses only one random cache line. Each cache line is accessed
100 000 times, resulting in 400 000 measurements. Figure 5.12a shows the
access time distribution to the coherence block when the monitored address
corresponds to a dynamically allocated array, i.e., data. In Figure 5.12b,
we see the access times to the coherence block when the physical address
corresponds to a switch and each case is on a different cache line, i.e.,
code.

88

9 Mitigation

605 610 615 620 625 630
0

10,000

20,000

30,000 Line 1 Line 2 Line 3 Line 4

access time [cycles]

co
u
n
t

(a) Data

670 680 690 700 710 720 730
0

2,000

4,000

6,000

8,000

access time [cycles]

co
u
n
t

Line 1 Line 2
Line 3 Line 4

(b) Code

Figure 5.12: Cohere+Reload access times to a coherence block when it contains
victim data (Figure 5.12a) and victim code (Figure 5.12b).

With these measurements we can make several observations. First, access
times to code (Figure 5.12b) is noisier than data (Figure 5.12a), even in
our example with a ret at the end of every case. In further tests we learn
that the distributions become visually separable when the attacker can
choose to repeat the same input. Since the ret instruction also improves
the result but does not make it perfect, we believe this is a combination
of misspeculation and a race condition between how fast the front end
can fetch data vs. how soon the ret is decoded.

In a real attack, exploitability depends heavily on the control an attacker
has over the target branch. If a single secret bit can be reliably repeated,
it only takes a few samples to train predictors and receive a clean signal
(cf. Section 4.2). If a sequence of bits can reliably be repeated in the same
order (e.g., a key that is used bit by bit), Figure 5.12b shows that by
combining repeated measurements we can produce distinct distributions,
even when attacking instructions.

9 Mitigation

AMD disabling the coherence feature will undoubtedly mitigate Cohere+
Reload, though VMPAGE FLUSH, if present, may lead to similar leakage, as it
may well have the same time dependence. Here, the fundamental question
is if the host’s ability to read the ciphertext at all is even necessary for SEV-
SNP. The SEV-SNP attestation flag CiphertextHidingDRAM suggests it
may not always be necessary, as it disallows reading of the ciphertext by
the hypervisor when active. As we have no hardware that supports this

89

5 Cohere+Reload: Cache Attacks on AMD SEV-SNP

feature, we can only speculate that the coherence mechanism could be
disabled when this setting is enabled, depending on how it is implemented.

On the developer side, hardened implementations could change the memory
type of critical sections (e.g., T-tables) to uncacheable. While this slows
down execution, our experiments show that loads to uncacheable memory
do not trigger the coherence mechanism.

10 Conclusion

In this paper, we introduced Cohere+Reload, a novel side-channel attack
exploiting AMD’s coherency for encrypted memory. We exploit two types
of leakage in the coherency mechanism: First, we exploit coherence con-
flicts, leaking victim operations on a spatial granularity of a 2 kB block.
Second, we exploit timing correlations with the number and location of
accesses, reaching a maximum spatial resolution of 256 bytes. In our syn-
thetic attacks, we showed that Cohere+Reload can observe control flow
and access locations in workloads within a confidential virtual machine.
As a benchmark we mounted an attack on mbedTLS RSA, leaking 99.7%
of the 4096 key bits in a single-trace attack. We also mounted an attack
on OpenSSL AES exploiting disalignments on a cache line granularity,
achieving an accuracy of 100% in only 1500 encryptions in a first round
T-table attack and an accuracy of 92.81% in 12000 encryptions with
a novel correlation attack. Our work shows that coherence mechanisms
can undermine the confidentiality of confidential virtual machines. Conse-
quently, we believe that vendors need to weigh the necessity of coherence,
as discussed above, against the opening of this side channel for future
implementations.

Acknowledgments

We want to thank Andreas Kogler. After tinkering with cache coherency
with SEV for some time at TU Graz, Andreas found an effect and suggested
that we investigate it. This research is supported in part by the European
Research Council (ERC project FSSec 101076409), and the Austrian
Science Fund (FWF SFB project SPyCoDe 10.55776/F85 and FWF
project NeRAM 10.55776/I6054). Additional funding was provided by
a generous gift from Intel. Any opinions, findings, and conclusions or

90

References

recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding parties.

References

[1] Stefan Gast, Hannes Weissteiner, Robin Leander Schröder, and
Daniel Gruss. CounterSEVeillance: Performance-Counter Attacks
on AMD SEV-SNP. In: NDSS. 2025 (p. 82).

[2] Intel. Intel Total Memory Encryption White Paper. 2025. url:
https://www.intel.com/content/www/us/en/architecture-a

nd-technology/vpro/hardware-shield/total-memory-encrpy

tion.html (p. 73).

[3] Fabian Rauscher, Carina Fiedler, Andreas Kogler, and Daniel
Gruss. A Systematic Evaluation of Novel and Existing Cache Side
Channels. In: NDSS. 2025 (p. 79).

[4] AMD. AMD Secure Encrypted Virtualization (SEV). 2024. url:
https://developer.amd.com/sev/ (p. 72).

[5] AMD. AMD64 Architecture Programmer’s Manual. 2024 (p. 74).

[6] ARM. Arm Confidential Compute Architecture. 2024. url: https:
//www.arm.com/architecture/security-features/arm-confi

dential-compute-architecture (p. 71).

[7] Gal Horowitz, Eyal Ronen, and Yuval Yarom. Spec-o-Scope: Cache
Probing at Cache Speed. In: CCS. 2024 (p. 73).

[8] Intel. Intel Software Guard Extensions (Intel SGX). 2024. url:
https://www.intel.com/content/www/us/en/products/do

cs/accelerator-engines/software-guard-extensions.html

(p. 71).

[9] Intel. Intel Trust Domain Extensions Module Base Architecture
Specification. 2024. url: https://www.intel.com/content/www
/us/en/developer/tools/trust-domain-extensions/documen

tation.html (pp. 71, 72).

[10] Luyi Li, Jiayi Huang, Lang Feng, and Zhongfeng Wang.
PREFENDER: A Prefetching Defender against Cache Side Chan-
nel Attacks as A Pretender. In: IEEE Transactions on Computers
(2024) (p. 75).

91

https://www.intel.com/content/www/us/en/architecture-and-technology/vpro/hardware-shield/total-memory-encrpytion.html
https://www.intel.com/content/www/us/en/architecture-and-technology/vpro/hardware-shield/total-memory-encrpytion.html
https://www.intel.com/content/www/us/en/architecture-and-technology/vpro/hardware-shield/total-memory-encrpytion.html
https://developer.amd.com/sev/
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html
https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html

[11] Erdem Aktas, Cfir Cohen, Josh Eads, James Forshaw, and Felix
Wilhelm. Intel Trust Domain Extensions (TDX) Security Review.
2023. url: https://services.google.com/fh/files/misc/int
el_tdx_-_full_report_041423.pdf (pp. 70, 74).

[12] Stefan Gast, Jonas Juffinger, Martin Schwarzl, Gururaj Saileshwar,
Andreas Kogler, Simone Franza, Markus Köstl, and Daniel Gruss.
SQUIP: Exploiting the Scheduler Queue Contention Side Channel.
In: S&P. 2023 (p. 82).

[13] Confidential Computing Consortium. A Technical Analysis of Con-
fidential Computing. 2022 (p. 72).

[14] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. MeshUp:
Stateless cache side-channel attack on CPU mesh. In: S&P. 2022
(p. 82).

[15] Intel. Intel Trust Domain Extensions. 2021. url: https://softwa
re.intel.com/content/dam/develop/external/us/en/docume

nts/tdx-whitepaper-v4.pdf (p. 72).

[16] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz,
Catherine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS:
Software-based Power Side-Channel Attacks on x86. In: S&P. 2021
(p. 82).

[17] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks. In: CCS. 2021 (p. 73).

[18] Zihao Wang, Shuanghe Peng, Wenbin Jiang, and Xinyue Guo.
Defeating Hardware Prefetchers in Flush+Reload Side-Channel
Attack. In: IEEE Access 9 (2021), pp. 21251–21257 (p. 75).

[19] AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More. 2020. url: https://www.amd.com/conten
t/dam/amd/en/documents/epyc-business-docs/white-papers

/SEV-SNP-strengthening-vm-isolation-with-integrity-pro

tection-and-more.pdf (pp. 71, 74).

[20] Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre,
Muhammad Khurram Bhatti, and Guy Gogniat. Winter is here! A
decade of cache-based side-channel attacks, detection & mitigation
for RSA. In: Information Systems 92 (2020), p. 101524 (p. 82).

92

https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://services.google.com/fh/files/misc/intel_tdx_-_full_report_041423.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-v4.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

References

[21] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas
Eisenbarth. SEVurity: No Security Without Integrity–Breaking
Integrity-Free Memory Encryption with Minimal Assumptions. In:
S&P. 2020 (p. 72).

[22] C Ashokkumar, M Bhargav Sri Venkatesh, Ravi Prakash Giri,
Bholanath Roy, and Bernard Menezes. An error-tolerant approach
for efficient AES key retrieval in the presence of cacheprefetching–
experiments, results, analysis. In: Sādhanā 44 (2019). doi: https:
//doi.org/10.1007/s12046-019-1070-8 (p. 75).

[23] Daniel Gruss, Erik Kraft, Trishita Tiwari, Michael Schwarz, Ari
Trachtenberg, Jason Hennessey, Alex Ionescu, and Anders Fogh.
Page Cache Attacks. In: CCS. 2019 (p. 72).

[24] Tom Lendacky. What processors support SEV? #1. 2019. url:
https://github.com/AMDESE/AMDSEV/issues/%5C#issuecomme

nt-581426096 (p. 74).

[25] Daimeng Wang, Zhiyun Qian, Nael Abu-Ghazaleh, and Srikanth V
Krishnamurthy. PAPP: Prefetcher-Aware Prime and Probe Side-
channel Attack. In: DAC. 2019 (p. 75).

[26] Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Poly-
chronakis, and Fabian Monrose. The severest of them all: Inference
attacks against secure virtual enclaves. In: AsiaCCS. 2019 (p. 72).

[27] John Monaco. SoK: Keylogging Side Channels. In: S&P. 2018
(p. 72).

[28] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha
Wessel. Severed: Subverting AMD’s virtual machine encryption. In:
EuroSec. 2018 (p. 72).

[29] Mark Zhao and G Edward Suh. FPGA-based Remote Power Side-
Channel Attacks. In: S&P. 2018 (p. 82).

[30] Elad Carmon, Jean-Pierre Seifert, and Avishai Wool. Photonic
Side Channel Attacks Against RSA. In: HOST. 2017 (p. 72).

[31] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using
Intel TSX. In: USENIX Security. 2017 (p. 73).

[32] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang,
Jesse Liu, and Jesse Fang. Secure encrypted virtualization is unse-
cure. In: arXiv:1712.05090 (2017) (p. 72).

93

https://doi.org/https://doi.org/10.1007/s12046-019-1070-8
https://doi.org/https://doi.org/10.1007/s12046-019-1070-8
https://github.com/AMDESE/AMDSEV/issues/%5C#issuecomment-581426096
https://github.com/AMDESE/AMDSEV/issues/%5C#issuecomment-581426096

[33] Felicitas Hetzelt and Robert Buhren. Security analysis of encrypted
virtual machines. In: ACM SIGPLAN Notices 52.7 (2017), pp. 129–
142 (p. 72).

[34] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (p. 75).

[35] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 82).

[36] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack. In:
DIMVA. 2016 (p. 73).

[37] David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory
Encryption. 2016 (pp. 72, 73).

[38] Daniel Gruss, David Bidner, and Stefan Mangard. Practical Mem-
ory Deduplication Attacks in Sandboxed JavaScript. In: ESORICS.
2015 (p. 73).

[39] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security. 2015 (p. 72).

[40] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Wait a minute! A fast, Cross-VM attack on AES. In: RAID.
2014 (p. 82).

[41] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA
Nonces Using the FLUSH+ RELOAD Cache Side-channel Attack.
In: Cryptology ePrint Archive, Report 2014/140 (2014) (p. 72).

[42] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security. 2014 (pp. 69, 72, 73).

[43] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P. 2013
(p. 72).

[44] Raphael Spreitzer and Thomas Plos. Cache-Access Pattern Attack
on Disaligned AES T-Tables. In: COSADE. 2013 (p. 84).

94

References

[45] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds. In: CCS. 2009 (p. 72).

[46] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks
against AES. In: CHES. 2006 (p. 82).

[47] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks
and Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 69,
72, 73).

[48] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
2005. url: http://cr.yp.to/antiforgery/cachetiming-20050
414.pdf (pp. 72, 82).

[49] Jean-Jacques Quisquater and David Samyde. ElectroMagnetic Anal-
ysis (EMA): Measures and Counter-Measures for Smart Cards. In:
E-smart. 2001 (p. 72).

[50] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In: CRYPTO. 1999 (p. 72).

[51] Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In: CRYPTO. 1996 (p. 72).

95

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

6
Generic and Automated Drive-by

GPU Cache Attacks from the
Browser

Publication Data

Lukas Giner, Roland Czerny, Christoph Gruber, Fabian Rauscher, An-
dreas Kogler, Daniel De Almeida Braga, and Daniel Gruss. Generic and
Automated Drive-by GPU Cache Attacks from the Browser. In: AsiaCCS.
2024

Contributions

Main author.

97

6 GPU Cache Attacks from the Browser

Generic and Automated Drive-by GPU Cache
Attacks from the Browser

Lukas Giner1, Roland Czerny1, Christoph Gruber1, Fabian
Rauscher1, Andreas Kogler1, Daniel De Almeida Braga2,

and Daniel Gruss1

1Graz University of Technology,
2University of Rennes, CNRS, IRISA,

Abstract

In recent years, the use of GPUs for general-purpose computations has
steadily increased. As security-critical computations like AES are becoming
more common on GPUs, the scrutiny must also increase. At the same time,
new technologies like WebGPU put easy access to compute shaders in
every web browser. Prior work has shown that GPU caches are vulnerable
to the same eviction-based attacks as CPUs, e.g., Prime+Probe, from
native code.

In this paper, we present the first GPU cache side-channel attack from
within the browser, more specifically from the restricted WebGPU en-
vironment. The foundation for our generic and automated attacks are
self-configuring primitives applicable to a wide variety of devices, which we
demonstrate on a set of 11 desktop GPUs from 5 different generations and
2 vendors. We leverage features of the new WebGPU standard to create
shaders that implement all building blocks needed for cache side-channel
attacks, such as techniques to distinguish L2 cache hits from misses. Be-
yond the state of the art, we leverage the massive parallelism of modern
GPUs to design the first parallelized eviction set construction algorithm.
Based on our attack primitives, we present three case studies: First, we
present an inter-keystroke timing attack with high F1-scores, i.e., 82% to
98% on NVIDIA. Second, we demonstrate a generic, set-agnostic, end-to-
end attack on a GPU-based AES encryption service, leaking a full AES
key in 6minutes. Third, we evaluate a native-to-browser data-exfiltration
scenario with a Prime+Probe covert channel that achieves transmission
rates of up to 10.9 kB/s. Our attacks require no user interaction and work
in a time frame that easily enables drive-by attacks while browsing the

98

1 Introduction

Internet. Our work emphasizes that browser vendors need to treat access
to the GPU similar to other security- and privacy-related resources.

Keywords: Side Channels, Cache Attacks, GPU computing.

1 Introduction

In the last decades, Graphics Processing Units (GPUs) have seen an
important evolution. While they were initially designed for the specific
purpose of graphic rendering, most modern discrete GPUs offer the possi-
bility of general-purpose computing. With the introduction of NVIDIA’s
CUDA [7] in 2007 and OpenCL [4] in 2009, GPUs have become common-
place for workloads that benefit from the massive parallelism they can
offer. While the individual execution speed is still slow compared to recent
CPUs, current-generation cards offer thousands of cores, enabling a huge
performance boost for parallelizable operations.

The increasing number of use cases of general-purpose GPU computing
includes computations on potentially secret information, e.g., neural net-
works [25] or cryptographic applications [22, 54]. Thus, general-purpose
GPU computing also becomes a more interesting attack target. Recent re-
search confirms these security concerns, as GPUs have become a recurrent
target of side-channel attacks, exploiting various shared components [6,
16, 25, 28, 34, 36, 39, 42]. Furthermore, attackers may also leverage the
GPU to attack other system components [24, 31]. As on CPUs, the GPU
cache is a particularly interesting resource for side channels. Consequently,
prior work also replicated well-known CPU cache side-channel attacks on
GPUs [14, 16, 17, 34, 39], albeit only in native code so far.

While native code has direct access to a large variety of GPU APIs, e.g.,
CUDA, Vulkan, Metal, and Direct3D, acquiring native code execution
is a significant hurdle for any attacker. Instead, the browser has become
a more interesting attack vector, as users routinely run untrusted third-
party code on their devices within the browser. Since GPU computing can
also offer advantages for computations within websites, browser vendors
decided to expose the GPU to JavaScript through APIs like WebGL
and the upcoming WebGPU standard. WebGPU is not only available
on desktop browsers but is also already partially supported on mobile
devices in Chrome Canary version 117. As the future standard for web-
based general-purpose interaction with GPUs, WebGPU aims to lay solid

99

6 GPU Cache Attacks from the Browser

foundations for performance and security. The standard already has explicit
mitigations against timing side channels [11], e.g., disabling timer access
(making it a trusted feature), and mimicking the JavaScript mitigation
against malicious use of the SharedArrayBuffer [23, 35, 41, 52]. Previous
work demonstrated native code side-channel attacks on GPUs, where the
browser triggered L1 and L2 cache activity, e.g., through WebGL [34].
However, the feasibility of a browser-based GPU cache side-channel attack,
targeting a victim running in native code or another browser window, nor
the possibility of an attack with the upcoming WebGPU standard [12]
have been demonstrated yet. Considering the ubiquitous attack surface
browsers offer to attackers, we need to investigate the following questions:

Can GPU cache side-channel attacks also be mounted from within a restric-
tive browser environment using APIs like WebGPU? Can these attacks
be made generic enough to work on the wide spectrum of GPU hardware?
To what extent can an attacker leverage GPU parallelization to enhance
attacks?

In this work, we answer these questions by presenting the first end-to-
end cache side-channel attacks from within browsers, leveraging the new
WebGPU standard. Despite the inherent restrictions of the JavaScript and
WebGPU environment, we construct new attack primitives enabling cache
side-channel attacks with an effectiveness comparable to traditional CPU-
based attacks. Our attacks are generic and automated, in the sense that our
2 attack primitives automatically determine GPU-specific configuration
parameters required for an attack, i.e., the cache hit-miss threshold, the
cache size, and the number of cache sets. Consequently, our attacks work
on a wide variety of devices, which we demonstrate in our evaluation: We
show that our 2 basic attack primitives work on 11 desktop GPUs from 5
different generations and 2 vendors, NVIDIA and AMD. We demonstrate
that based on these, we can also identify cache sets and monitor cache set
collisions directly from a browser on a variety of NVIDIA GPUs.

We introduce 3 techniques to exploit cache contention on the L2 cache
of discrete GPUs from JavaScript via WebGPU compute shaders. First,
we highlight that significant cache eviction, often induced by graphical
rendering, can enable attackers to discern instances of re-rendering. Second,
we implement a templating attack within the browser, designed to monitor
memory access patterns. Lastly, we present the first Prime+Probe attack
on discrete GPUs executed from a browser. For all 3 attacks, we evaluate
whether using the GPU’s parallelism improves the basic attacks. For the
eviction set construction in particular, we extend the state of the art

100

1 Introduction

by leveraging the massive parallelism of modern GPUs with the first
parallelized eviction set construction algorithm.

We evaluate our attacks in 3 distinct scenarios covering both low-frequency
non-repeatable events, as well as repeatable and high-frequency events: an
inter-keystroke timing attack, AES key extraction, and the establishment
of a covert channel, all initiated from a browser, i.e., through an attacker-
controlled website. Our keystroke monitoring attack detects inter-keystroke
timings with F1-scores in the range of 82% to 98%, and a sampling
time below 15ms, fast enough to distinguish even very fast typing. We
successfully extract AES keys in 6min with a precision of 100%. Our
templating approach enables us to profile the T-tables in 13 s on average,
with the remaining time (5.7min) dedicated to the last round attack. We
perform the attack on 2 recent GPUs, a NVIDIA RTX 3060 Mobile and
a NVIDIA RTX 3060 Ti, with similar results. Lastly, we demonstrate a
covert channel with true channel capacities between 7.3 kB/s and 10.9 kB/s
on the NVIDIA RTX 2070 Super, NVIDIA RTX 3080 and NVIDIA RTX
3060 Ti.

Our attacks require no user interaction and work within a realistic time
frame a user might spend on a website, e.g., in the range of multiple
minutes. Therefore, they can easily be implemented as drive-by attacks,
targeting arbitrary users while browsing the Internet. Furthermore, since
our attacks are based on WebGPU, they are applicable to all operating
systems and browsers implementing the WebGPU standard and, as we
demonstrate, to a broad range of GPU devices. Consequently, it becomes
clear that browser vendors need to reassess their approach to offer GPU
access to untrusted websites without user consent. Instead, we recommend
a security-centric interactive approach that is already applied to all other
security- and privacy-related resources, such as the microphone and the
camera.

In summary, our paper makes the following main contributions:

1. We present the first end-to-end cache attacks on GPU caches from the
browser, using the restrictive WebGPU API.

2. We evaluate our attack primitives and attacks on a wide range of GPU
architectures and explore where the massive parallelism of GPUs can
improve attacks.

3. Based on our insights, we develop the first parallel eviction set con-
struction algorithm and the first Prime+Probe attack on the L2 cache
of a single, dedicated GPU.

101

6 GPU Cache Attacks from the Browser

4. We describe a novel templating approach that we use in an attack
on an AES T-table GPU implementation. Using predictable LRU
cache set eviction cascades on GPUs, our attack can skip the lengthy
set-construction phase by exploiting only contention in sets that are
actually used by the victim.

Outline. Section 2 provides the background and Section 3 our threat
model. Section 4 presents the primitives for Prime+Probe on the GPU
from the browser. Section 5 explores an inter-keystroke timing attack.
Section 6 evaluates our attack for an AES key recovery and Section 7 in a
covert channel scenario. Section 8 discusses limitations and mitigations.
Section 9 concludes.

2 Background

2.1 GPU architecture

The architecture of discrete GPUs may vary by brand. Hereafter, we
focus on giving an insight into discrete GPUs architecture, tackling both
computation and memory management. We default to the concepts and
notations adopted by NVIDIA, but similar concepts are used by other
manufacturers, such as AMD.

A GPU consists of multiple Streaming Multiprocessors (SMs), called
Compute Units (CUs) on AMD cards. Each SM has its dedicated memory
subsystem, including shared memory (SM-local memory), caches, and
functional units, to execute multiple threads in parallel, operating under
the SIMD paradigm. On GPUs, threads are organized into thread blocks
(also called workgroups on WebGPU) that are assigned their own SM
when executed. SMs consist of multiple processing blocks (4 on recent
NVIDIA and AMD GPUs). Each processing block is a separate SIMD
execution unit with its own load and store units capable of running 32
threads in parallel. Thread blocks are divided into warps, groups of 32
threads that are scheduled on processing blocks. Processing blocks have
warp schedulers, hardware schedulers that schedule warps in and out of
the processing block. When a warp has to wait for a memory access or
register dependencies, the warp scheduler schedules a different warp that is
ready to execute to keep the SIMD units busy. The constant rescheduling
of warps allows for latency hiding and, therefore, more efficient use of
processing blocks [7].

102

2 Background

processing
block

L0

processing
block

L0

processing
block

L0

processing
block

L0

L1

processing
block

L0

processing
block

L0

processing
block

L0

processing
block

L0

L1

L2

DRAM System Memory

SM SM

GPU

Figure 6.1: Modern GPUs (here NVIDIA) have an L0 cache per processing block,
an L1 cache per SM, and a shared L2 cache.

Prior to the Volta architecture, all threads in a warp share the same
instruction unit with a single program counter, i.e., instructions execute
in lockstep [40]. If threads in the same warp diverge, they are masked
until they converge again. If some threads execute the if-branch and
some execute the else-branch, the entire warp executes the if-branch
and the else-branch with threads masked accordingly. Volta introduced
independent thread scheduling, with a per-thread program counter and
call stack, allowing the processing block to interleave execution of diverging
branches [40].

Similar to CPUs, GPUs use caches to reduce the latency for memory
accesses. Namely, each SM has a dedicated L1 cache that is shared between
processing blocks, and each processing block has access to a smaller private
L0 cache. Finally, GPUs share one global L2 cache (LLC) between the
SMs. Figure 6.1 illustrates the cache hierarchy of Nvidia Turing GPUs.
However, we note a few relevant peculiarities of GPU caches. First, there
is no coherency protocol between caches, and maintaining coherency is
the responsibility of developers. Second, unlike the classical 64-byte cache
line in CPUs, GPUs’ LLC commonly has 128-byte cache lines [1, 8].

103

6 GPU Cache Attacks from the Browser

2.2 GPU APIs

GPUs can be called through different APIs depending on the context. We
distinguish two main API families: native APIs (e.g., OpenGL, Vulkan
and CUDA), and web APIs (e.g., WebGL and WebGPU).

Native APIs. The most straightforward and efficient way to interact with
a GPU is through dedicated native APIs. They enable the use of GPUs for
either graphic rendering or generic computing. OpenGL was introduced
in 1992 to support GPU-assisted rendering on Linux and Apple plat-
forms, while Windows uses the Direct3D framework. For general-purpose
computing, OpenCL, released in 2008, provides support for all major
GPU vendors and is widely used. In 2007, NVIDIA released CUDA [7],
a compute language specifically designed for NVIDIA GPUs. CUDA is
supported by both consumer- and business-oriented NVIDIA GPUs. The
high market share of NVIDIA GPUs and the ease of use of CUDA makes
it the currently most widely used framework for general-purpose compu-
tation on GPUs. Apple recently dropped support for OpenGL in favor of
Metal. Similarly, Vulkan was released in 2016 as a modern alternative to
OpenGL. While these APIs have their differences, typical calls include
operations on texture mappings, rasterization, and memory management
on the GPU.

Web APIs. WebGL is the current baseline JavaScript API giving access
to the GPUs rendering. As its name suggests, it was originally designed
with a specific goal: graphic rendering in browsers. Hence, its API is
limited and does not provide support for generic computations on the
GPU [3]. This was the motivation behind the WebGL 2.0 Compute initia-
tive [19]: “to bring compute shader support to the web via the WebGL
rendering context”. Due to the emergence of new native rendering APIs,
the diminishing prominence of OpenGL, and the perceived constraints of
WebGL, the project contributors decided to deprecate it [19] in favor of a
more contemporary alternative, namely WebGPU.

Like WebGL, WebGPU provides access to the GPU graphics capabilities
in the browser. It is, however, not a mere wrapper around OpenGL. More
than that, it aims at being cross-platform and supporting modern graphic
APIs, such as Vulkan, Metal, and DirectX, through JavaScript. Compared
to WebGL, it offers a cleaner API, significantly better performance, and a
more generic application range. At the time of writing, the standard is
still under active deployment. However, the involvement of major browsers
in this process, and the promising performance, foreshadow a widespread

104

2 Background

deployment in the next years. Chrome, Chromium, and Microsoft Edge
already support WebGPU in their official release, and Firefox has it in
its Nightly version [5]. Support of mobile GPUs is also in progress, with
recent deployment on Android [2].

Developers can create rendering pipelines and manage GPU resources
with WebGPU. WebGPU has its own shader language called WebGPU
Shading Language (WGSL) to write custom shaders that are compiled at
runtime. While WebGPU provides access to GPUs through native APIs,
implementations of the standard may restrict the available GPU resources,
e.g., memory and runtime, for security reasons. Without restrictions, big
WebGPU workloads could significantly impact the useability of the host
system [10], as most GPUs only allow for one active shader at a time.

2.3 Prime+Probe

In the last decades, microarchitectural attacks have been studied exten-
sively. Prime+Probe [47, 56] is a cache-based attack that exposes the
memory access patterns of a process by exploiting cache contention to
leak the cache set accesses. This technique is particularly useful for at-
tackers with limited control over the victim’s machine, since it has low
requirements and does not need shared memory or direct control over
the cache with a flush instruction. Because of these weak assumptions,
it is well-suited for browser-based attacks, where an attacker controls
JavaScript on a web page [21, 49].

Assuming the attacker can execute code on the same processor as the
victim, the attack works as follows. First, the attacker primes the cache
by filling well-chosen cache sets with its own data. Then, they wait for the
victim to make memory accesses. Finally, the attacker probes their data to
access the same cache sets as before. If the victim accessed one of the sets
monitored by the attacker, they will have evicted some of the attacker’s
data, causing a longer latency in the probing phase. In the context of a
covert channel, the attacker would run both sender and receiver, and use
the contention on the cache sets to build the channel.

2.4 Related Work

Covert and side channels on GPUs. Naghibijouybari et al. [6] describe
multiple covert and side-channel attacks on GPUs. Wu et al. [15] exploit

105

6 GPU Cache Attacks from the Browser

rendering contention to perform side-channel attacks on browsers. Many
works consider a spy outside of the targeted GPU. Jiang et al. [28, 36,
42] present a cache-based attack, a shared memory attack, and a bank-
conflict attack, all leading to a key recovery attack on AES. Similarly,
Ahn et al. [16] exploit cache conflicts to recover an AES key from a GPU
implementation. While they rely on cycle-accurate timers, our attack
works from the browser without a timer. In addition, their spy uses the
native API, while we perform our attack from the browser. More similar to
our approach, Dutta et al. [18] perform Prime+Probe on Intel’s integrated
GPU through contention on the LLC shared between the CPU and GPU
with native OpenCL. They also demonstrate ring-bus interconnect covert
channel reaching the LLC. Dutta et al. [14] present a cross-multi-GPU
Prime+Probe covert channel based on L2 contention. Our threat model
is different, assuming a spy co-located on the same GPU in a drive-by
attack from the web.

Naghibijouybari et al. [34, 39] present the first attacks in the co-located
setting. Their first work [39] presents an in-depth study of General Purpose
GPUs and highlights various ways to build covert channels on GPUs using
caches and functional units. In their following work [34], they demonstrate
the ability of an attacker to implement website fingerprinting based on
GPU memory usage and performance counters. They also demonstrate
the practical impact of their attack by tracking keystrokes from users
and recovering some internal parameters of a neural network running
on the GPU. Wei et al. [25] present a similar approach, using the GPU
context-switching impact on performance counters to enhance the leakage
and recover the complete structure of a neural network.

Despite the groundbreaking nature of these works, our contributions differ
in key aspects. All aforementioned contributions rely on the attacker having
access to the native APIs of the GPU through CUDA or OpenGL. This
enables them to monitor high-precision performance counters. Our attack
works entirely from the browser using JavaScript, with the corresponding
API limitations (e.g., we do not have an accurate timer). This results in
better portability but also a weaker attacker in our threat model.

Browser-based cache attacks on GPUs. The growth of web-based
API usage to offer GPU-enhanced rendering inadvertently enables attack-
ers to run GPU-based attacks through JavaScript, bypassing its existing
limitations. To our knowledge, all existing works exploit the GPU through
the WebGL API. Frigo et al. [31] leverage the integrated GPU to mount
Rowhammer attacks from browsers on mobile devices, using the WebGL

106

2 Background

1 if global_id.x != 0 {

2 var time: u32 = 0;

3 atomicStore(&timer, 0);

4 while (atomicLoad(&stop) != stop_value) {

5 for (var a: u32 = 0; a < 100000; a++) {

6 time++;

7 atomicStore(&timer, time);

8 } } }

9 else {

10 start = atomicLoad(&timer);

11 var c : u32 = atomicLoad(&buffer); //access

12 if c != 0 { //prevent optimization

13 return;

14 }

15 end = atomicLoad(&timer);

16 atomicStore(&stop, stop_value);

17 }

Listing 6.1: Counting thread implementation in WGSL based on the global thread
id and atomic operations.

timing APIs. In response, major browsers disabled this timer. Cronin et al.
[17] presented a browser-based attack with assumptions similar to ours.
They target SoC platforms and leverage system-level cache occupancy to
build a covert channel and fingerprint websites. They differ from our work
in multiple aspects. First, they focus on a SoC system and use contention
on the system-level cache, which is shared between the CPU cores and
its peripherals (namely the GPU) in ARM systems. This enables them to
create contention from the CPU, whereas we consider spy and attacker to
be co-located on the GPU. Second, the cache occupancy of the system-level
cache is significantly different, resulting in different challenges to overcome.
Finally, they exploit it using WebGL code, while we focus on its succes-
sor, WebGPU, which claims to consider and address the side-channels
threat. Recently, Taneja et al. [9] demonstrated hybrid side channels on
the CPU and GPU, based on how they adjust their frequency, power, and
temperature depending on the workload. They demonstrate that GPUs
exhibit instruction and data-dependent throttling. Their JavaScript attack
assumes a victim in the browser but still relies on the ability of the attacker
to access native APIs to monitor the power consumption and frequency
of the GPU.

107

6 GPU Cache Attacks from the Browser

3 Threat Model

As we target WebGPU, our primary requirement is a browser with We-
bGPU support. As of writing, this includes Chrome releases since version
112, Chromium, Edge, and Firefox Nightly. By targeting web browsers,
our threat model includes any scenario where a browser might run while
sensitive information is being processed. Because the entire system usually
shares the GPU, this can include anything rendered (such as websites or
applications) and general-purpose computing operations. We show that
our attack can be done in a drive-by manner, simply by visiting a website
for a while. We assume that the victim will visit an attacker’s page for
several minutes, e.g., reading a blog with malicious WebGPU code. We
do not assume that WebGPU provides any interface for hardware timers.
To further constrain our attacker, we assume that WebGPU provides no
workgroup memory in reaction to prior work [18]. In this paper, we attack
dedicated NVIDIA and AMD GPUs, whereas some other works [31] have
focused on integrated mobile GPUs.

4 WebGPU primitives

To build advanced cache attacks in WebGPU, we need several key primi-
tives. The first is a timer accurate enough to reliably distinguish a cache
hit from a miss. Using this timer, we can then detect cache size, cache
activity, and build Prime+Probe eviction sets. While these primitives have
been extensively studied on CPUs [30, 47, 49, 56], building them on GPUs
involves some difficulties, especially from a browser. In this section, we
detail these challenges and how to overcome them using WebGPU and
minimal requirements.

4.1 Timing without clocks

Most previous works on GPUs are run natively and rely on high-precision
timers or related performance counters for their measurements. However,
WebGPU took explicit measures to preclude timing attacks, such as
making timestamp-query optional and limiting interactions via shared
buffers, similar to SharedArrayBuffer mitigations in browsers. To our
knowledge, the shader language WGSL does not include any timers at

108

4 WebGPU primitives

this point. To present a generic primitive, we will construct our attacks
without API-provided timers.

JavaScript encounters the challenge of imprecise timers, so prior works
on the CPU had to consider similar constraints and employed counting
threads [18, 35, 41, 43]. The idea is to set up a shared memory buffer and
use a dedicated thread to constantly increment a shared variable. Another
thread can then read this variable and interpret its value as a timer. When
applying this concept to WebGPU, we face three challenges.

C1. Threads serialization. Different compute shaders cannot run at
the same time. Therefore, the same shader needs to count on one thread
and execute the attack code on another, as shown in Listing 6.1. While
this would be straightforward on the CPU, GPU threads scheduled on
the same processing block may run in lockstep on some architectures [13].
This means that if threads in the same warp need to execute different
instructions (warp divergence), they would run sequentially, hindering the
use of our counter as a timer.

C2. Memory coherency. Unlike for CPUs, GPUs have no automatic
coherency guarantee in the memory hierarchy. Each SM manages a dedi-
cated memory subsystem, so SMs may contain different copies of the same
data in their L1 caches. Maintaining a coherent state by synchronizing the
data is left to the developers. Therefore, without coherency, our counting
thread would increment the timer in its private L1 cache, unobservable
from the outside.

C3. Optimization. The WGSL compiler aggressively optimizes the
code, such that a counting while loop may be replaced with the final
result, and memory accesses may be replaced by registers.

Solutions. In their OpenCL implementation, Dutta et al. [18] solve
the first challenge by executing enough counting threads to fill one or
more warps. Then, they conduct the attack in a separate warp within the
same SM, so each warp only executes the same branches, avoiding warp
divergence. To address the other challenges, they simply store the counter
in a shared memory region available to all threads in the same workgroup.

In line with our goal to get a portable and low-assumption attack, we
suggest a more generic approach. To address C1, we set the workgroup
size of the shader to 1, which prevents scheduling on the same processing
block. Our solution demonstrates that even a strong security measure,
like disabling shared memory, would not prevent timers in WGSL. We

109

6 GPU Cache Attacks from the Browser

Table 6.1: Timing thread counter value for the 98th and 5th percentile for L2
cache hits and misses, respectively, for a variety of GPUs and the
methods add and store. A good threshold can be found when the
distributions are clearly separable. n = 1000 000 hits and misses were
recorded each.

Add Store

GPU hit>98% miss<5% hit>98% miss<5%

A
M
D RX 6800 XT 6 7 9 11

RX 6900 XT 5 7 9 11

N
V
ID

IA

GTX 1070 5 8 62 95
GTX 1650 7 13 75 94
GTX 1660 Ti 7 11 74 94
GTX 1660 Ti Lin 4 7 10 18
RTX 2070 SUPER 6 8 80 106
RTX 2070 SUPER Lin 4 8 11 18
RTX 3060 Mobile Lin 5 8 11 18
RTX 3060 Ti 8 13 90 124
RTX 3060 Ti Lin 5 7 11 20
RTX 3080 8 12 95 119
RTX 4090 7 10 99 145
Quadro P620 5 7 61 88

can solve C2 and C3 using atomic instructions (see Listing 6.1). First,
they guarantee that memory accesses will not be turned into register
accesses for optimization. Second, loads and stores performed by atomic

instructions bypass the L1 cache to directly access the L2 cache, which
enforces coherency. However, C3 presents an additional challenge not
solved by atomic operations. Sometimes the compiler will reorder or drop
the measured load. We can prevent this by using the loaded value in a
condition whose outcome the compiler does not know.

A minimal example of this approach is illustrated in Listing 6.1. One
thread is chosen to be the timing thread via the global invocation id
global id, while the other can perform the attack. To spend as little
time as possible reading the stop variable, the timing thread spends most
of its time in a tight inner loop. All memory operations interacting with
other threads are done with atomic instructions. The condition in Line 12
prevents compiler optimization of the load order or elimination of the
target load.

Table 6.1 shows the hit-miss separation for both techniques on 11 different
GPUs. We also find that on most cards, incrementing a local variable and

110

4 WebGPU primitives

4 6 8 10 12 14 16 18 20
0

0.2
0.4
0.6
0.8
1

·106

timer count

sa
m
p
le
s hit (add) hit (store)

miss (add) miss (store)

(a) AMD RX 6800 XT

0 22 60 95 119 160
0
2
4
6
8

·105

timer count

sa
m
p
le
s hit (add) hit (store)

miss (add) miss (store)

(b) NVIDIA RTX 3080

Figure 6.2: WebGPU cache hit and cache miss histograms for different GPUs
with counting thread for 1 million samples. Adding to a memory
location provides less resolution than storing a register value. Higher
counts show higher timer resolution.

updating it with atomicStore is significantly faster than using atomicAdd,
since the latter is a blocking operation that requires waiting until the
data is brought to the execution unit. However, this technique seems
to be much less effective on AMD in general, but also on some Linux
configurations (noted as Lin, as opposed to Windows default). Our testing
revealed that this optimization may depend on multiple factors, such as
the operating system and driver version (see Section 8). This optimization
is of course only applicable to data accesses in L2 cache that are not meant
to be timed. Figure 6.2 also highlights this difference but confirms that L2
cache hits and misses are clearly distinguishable in either case. In the end,
our timer primitive cannot be prevented without removing the atomic

operations, and its accuracy is only limited by the time it takes to load
from and store to the L2 cache.

111

6 GPU Cache Attacks from the Browser

4.2 Cache-Size Detection

As our goal is to show that virtually all WebGPU-enabled devices are
affected by these generic attacks, we try to hardcode as few parameters
as possible. An important parameter for all further sections is the cache
size. It determines how many sets we can expect (Section 4.3) and lets us
derive suitable buffer sizes for cache eviction detections (Section 4.4).

We assume standard LRU, as suggested in previous work [26], and fill the
cache with a large array of 10MB. The buffer size choice is motivated
by our observation that most GPUs have below 8MB of L2 cache. In
the same shader execution, we now iterate over the array forward and
then backward, counting hits. Changing direction avoids self-eviction of
an entire set after a single miss and allows us to accurately measure the
number of cache lines that remain in the cache. If the hit rate is very high
(> 95%), we increase the test size in steps to 40MB, 80MB, and 100MB.
This keeps measurement times low for most cards, while allowing accurate
detection even for larger caches. Finally, we match this approximate size
to the closest larger size within a list of known sizes.

Table 6.2 shows that for most cards, we can reliably determine the cache
size in less than 400ms. Of interest among the outliers is the NVIDIA
RTX 3060 Ti. It reliably returns a size of 3MB, and indeed, we never see
any hits more than exactly 3MB, though the official L2 cache size is 4MB.
A simple explanation is that both our NVIDIA RTX 3060 Ti models, only
have 3MB of L2 cache. Another possibility is that these cards have a
different mapping function, and some part of their cache is only reachable
for much larger total VRAM allocations. We will encounter this again in
Section 4.3.

4.3 L2 Cache Eviction Set Construction

The next step in building a Prime+Probe attack is to find a set of addresses
that map to the same cache set. To make sure this set of addresses replaces
all the current entries in the cache set, the cardinality of the set should
at least match the cache associativity W . We call this an eviction set.
On CPUs, much work has been done to reverse engineer the mapping
from virtual-to-physical addresses to cache sets [46, 48, 50]. Comparable
work on GPUs [14, 26, 27, 32, 44] however has shown that their cache
set mapping can be much more complex. Jain et al. [26] used a modified

112

4 WebGPU primitives

Table 6.2: Our WebGPU cache-size finding algorithm on a variety of GPUs,
n = 10. With one exception, the correct size is almost always found
on all cards.

Size Runtime

Actual Detected Correct µ x̄ σ
GPU MB MB % ms ms

A
M
D RX 6800 XT 4.0 4.0 100 179.3 19.21

RX 6900 XT 4.0 4.0 100 185.6 26.20

N
V
ID

IA

GTX 1070 2.0 2.0 100 192.6 26.15
GTX 1650 1.0 1.0 100 422.2 31.56
GTX 1660 Ti 1.5 1.5 100 283.6 11.02
RTX 2070 SUPER 4.0 4.0 100 189.9 6.15
RTX 3060 Mobile 3.0 2.975 90 285.3 15.03
RTX 3060 Ti 4.0 2.975 0 276.8 9.50
RTX 3080 5.0 5.0 100 257.4 9.81
RTX 4090 72.0 72.0 100 1 729.6 60.23
Quadro P620 1.0 1.0 100 251.7 23.25

driver to reverse-engineer the hash functions for mapping addresses to
both cache and VRAM on an NVIDIA GTX 1070 and 1080. However,
our tests suggest these functions differ in newer generations of NVIDIA
GPUs. In particular, many GPUs need to employ different non-linear (or
linear, but different by address range) mapping functions due to their
non-power-of-two cache and VRAM sizes. Additionally, AMD or even
mobile GPUs may follow an entirely different scheme altogether. Like the
work by Dutta et al. [14], we also do not have the advantage of relying
on physically contiguous memory, or any specific page size.

In keeping with our generic approach, we do not attempt to rely on any
known mapping functions or page sizes. Instead, we employ a generic
set-finding algorithm based on prior work for CPU caches. Given a timer
accurate enough to distinguish cache hits and misses, an attacker should
be able to create eviction sets efficiently, similar to the methods presented
by Qureshi and Purnal et al. [20, 29].

While this approach works well for CPUs, we encountered various chal-
lenges to efficiently port it to GPUs. Hereafter, we describe a novel
approach to compute fast and reliable eviction sets on GPUs. In particu-

113

6 GPU Cache Attacks from the Browser

1 S ← {1.5x cacheSize, 128B steps}

2 Buckets ← {{}}

3 while S != {}

4 B ← S, P ← B[0] 1 //initialize B, select a pivot P

5 while |B| > targetSize

6 G ← {}

7 do

8 shuffle(B)
9 B ← B ∪ G, G ← B[0:1/2W |B|], B ← B\{P ∪ G}

10 access(P), parallelAccess(B) //access pivot, then B

11 while isCached(P) 2

12 if optCondition() 2b

13 hits ← accessAndMeasure({B ∪ P})
14 B ← B\hits //remove addresses not part of eviction sets

15 B ← B ∪ P, S ← S\B
16 Buckets ← Buckets ∪ {B}

Listing 6.2: Parallel Set Construction. This simplified pseudo-code algorithm
partitions an initial set of addresses S into several buckets B whose
addresses do not share cache sets.

lar, we describe how to leverage the powerful parallelism that GPUs offer
to speed up this process.

The basis of our implementation is the Group-Elimination Method
(GEM) [29]. The goal of GEM is to find an eviction set for a target address.
To this end, a large set of addresses S >> W that evicts the target address
is partitioned into W + 1 groups. As a full eviction set of W addresses
must be contained in some combination of ≤ W out of the W groups, (at
least) one group can be eliminated without affecting the eviction. GEM
tries to remove each of the W + 1 groups from the set S until one is
found that does not influence the eviction of the target. This is repeated
until only W addresses remain in S , forming an eviction set for the target
address.

Our implementation differs from GEM in two significant ways. First,
we aim to find all sets, and we, therefore, try to find more than one
eviction set at a time. Similar to Prime+Prune+Probe [20], we make use
of the predictable behavior of LRU for this. Second, we parallelize parts
of the algorithm to multiple threads. Many constants in the following
are empirically determined values that work on a variety of GPUs, not
optimal values.

114

4 WebGPU primitives

Parallel Set Construction. See Listing 6.2. When we access many
addresses in parallel on the GPU (or the CPU), ordering between them
is not guaranteed. This means that when a set is split between different
threads, we can no longer expect to observe effects stemming from LRU. In
effect, eviction measurements that rely on access order become meaningless.
We, therefore, add a preprocessing step to the eviction-set construction
algorithm.

The goal of preprocessing is to separate an initially large set S of addresses
si = |S| (1.5x the cache size in 128B steps) into buckets with no over-
lapping sets. This partitioning facilitates the independent examination of
each bucket for sets, circumventing inter-thread interference. The process
follows a similar approach as GEM and is delineated in two main steps.

Starting with B = S , the first (1) step involves selecting a random element
from the set as our pivot. This pivot address guarantees the presence of at
least one complete set within the bucket, although it probably contains
several more. The second (2) step consists in removing a portion of the
set, i.e., a group, and verifying if the pivot element is still evicted by the
residual B . If eviction is not observed, we reiterate with another group.
Contrary to GEM, we find that eliminating 1/2W |B| rather than 1/W + 1
better mitigates the excessive removal of elements in later steps (2b).

We also incorporate several optimizations not found in GEM. Until B
diminishes to 3/4si, we exploit parallelism by accessing all set elements
concurrently using 30 threads, measuring only the pivot at the end. When
|B | < 1/6si or on every fourth iteration when |B | < 3/4si (optCondition
is met, Line 12), we measure not just the pivot but all other elements
. We only do this sparingly because measuring elements in addition to
accessing them has a significant overhead, and, as mentioned, LRU-related
observations can’t be parallelized while sets are still unknown. However,
this enables a crucial optimization: the removal of all set elements that
register a cache hit (2b). Given a consistent access sequence and a cache
replacement policy approximating LRU, all persisting elements in B are
now part of full eviction sets.

This procedure can be iterated until B is below a predetermined threshold.
Empirical evaluations suggest a bucket size of 3500 (equivalent to 145−206
sets) works for the majority of GPUs. Upon completion, B is subtracted
from S . We are left with a bucket of the desired size, exclusively containing
eviction sets. The residual segment of S does not include overlapping sets
with the bucket. Repeating the previous steps ensures that the final buckets

115

6 GPU Cache Attacks from the Browser

1 Buckets = ParallelSetConstruction()

2 originalBuckets ← Buckets, EvictionSets ← {}

3 Pivots ← {B[0] | B ∈ Buckets)} A

4 Buckets ← {{B\P} | (B,P) ∈ (Buckets,Pivots)}

5 while ∃B : B ̸= {}

6 Gs ← {{}}

7 foreach B ∈ Buckets : B ̸= {}

8 if |B| > 1000

9 G ← B[0:1/2W |B|] B

10 else

11 G ← B[0] B2

12 Gs ← Gs ∪ {G}, B ← B\G
13 AllHits = parallelMeasure(Pivots, Buckets) C

14 foreach (P,Hits,B,G) ∈ (Pivots,AllHits,Buckets,Gs)

15 if isCached(P)
16 B ← B ∪ G
17 shuffle(B)

18 else

19 B ← B\Hits D

20 if |B| == W //bucket has reduced down to one set

21 EvictionSets ← EvictionSets ∪ {B ∪ P}
22 B = originalBucket\{B ∪ P} //refill Bucket

23 shuffle(B)
24 P ← B[0], B ← B\P A

25 else if |G| == 1 && |Hits| == W E

26 EvictionSets ← EvictionSets ∪ {G ∪ B} //free set!

Listing 6.3: Parallel Bucket Sifting. This algorithm sifts sets in parallel from the
previously separated buckets.

consist only of non-overlapping eviction sets, collectively representing
nearly all cache sets.

Parallel Bucket Sifting. With full eviction sets sorted into roughly
equal buckets, we can now begin to extract single sets from them. Since
there is no more overlap between the cache sets in the buckets, we can
now run measurements on them in parallel. For the NVIDIA RTX 3080
and its 5MB cache for example, the previously mentioned target bucket
size produces around 16 buckets of 160 sets each, with up to 24 addresses
per set. This means we can start a loop on our 16 input buckets with the
following broad steps running in parallel for each bucket. First, we once
again shuffle the elements in each bucket B and pick a pivot element to
find an eviction set for (A). Second, like before, we remove groups of
1/2W |B| elements until we find one that doesn’t affect the pivot’s eviction

116

4 WebGPU primitives

(B). Third, to determine eviction, we measure the access latency for all
addresses remaining in all buckets in parallel. (C) Fourth, addresses in
buckets that show cache hits are also removed, such that all remaining
addresses still form eviction sets within B (D). Buckets are shrunk in
parallel this way until a bucket’s size goes below 1000 elements. At this
point, instead of 1/2W |B|, we remove only a single element per loop (B2).
This allows us to make use of the cascading eviction effect of the LRU
replacement policy: when we remove only one address, that together with
W other addresses in B forms an eviction set, those W addresses will now
show up as cache hits (E). In effect, we have found an entire eviction
set in a large bucket B by removing a single element. This allows us to
sift out many sets for “free” while trimming the bucket to find the pivot
element’s eviction set. We continue decreasing the bucket size until either
a complete eviction set for the pivot remains, or some false measurement
has left us with an incomplete set. At this point, we refill the bucket with
all discarded addresses that could not be attributed to a complete set and
start again at step one. The algorithm terminates when either all buckets
are empty, or no new sets have been found for too long.

This sifting method is so effective, in fact, that it finds significantly more
sets than the number of pivots chosen. On our NVIDIA RTX 3080, for
example, we might search 17 buckets for eviction sets with 90 chosen
pivots (an average of 5.2 bucket “refills”), but sift out 2465 sets on the way.
The change at 1000 elements represents an empirically found trade-off
between fast bucket-shrinking and a high amount of sets found through
sifting. When the number is too high, the time to find sets will needlessly
increase, as most sets start with an average of 24 addresses, but can only
be detected when just 16 are left in the bucket. When it is too low, many
sets are lost to the sifting method through the removal of many elements.

Combining these optimizations, we can map most sets in the L2 cache of
all NVIDIA GPUs in WebGPU in a reasonable time frame, as shown in Ta-
ble 6.3. The notable exception is the NVIDIA RTX 4090, as the enormous
cache size presented problems not found in other cards. Likewise, both
AMD cards fail this important step to further attacks and are therefore
not included in the more advanced attacks. One possible explanation is
that the timing difference to other cards, which can already be seen in
Table 6.1, causes more noise, as the hit and miss distributions are closer
together. While we believe that from the basic timing difference, it is clear
that all our attacks could run on these cards, we only had temporary
and time-restricted remote access to these GPUs, which did not allow for

117

6 GPU Cache Attacks from the Browser

Table 6.3: Our WebGPU set-construction algorithm on a variety of GPUs, n = 10.
All but one card reliably find > 80% of sets.

Sets Runtime

Overall Found x̄ Found σ x̄ σ
GPU % % min min

N
V
ID

IA

GTX 1070 1 024 96.0 2.1 11.8 4.8
GTX 1650 512 82.9 2.2 4.2 3.9
GTX 1660 Ti 768 96.4 2.1 12.1 3.8
RTX 2070 SUPER 2 048 98.7 1.0 7.0 2.1
RTX 3060 Mobile 1 536 99.9 0.1 2.3 0.4
RTX 3060 Ti 1 536 94.5 5.3 2.6 1.5
RTX 3080 2 560 99.3 1.9 2.8 1.2
Quadro P620 512 50.8 24.5 13.7 9.0

analyzing the underlying problem. The NVIDIA RTX 3060 Ti also sticks
out, as it consistently finds close to 1536 sets even when looking for 2048.
This is consistent with 3MB of L2 cache found in our experiments (see
Section 4.2).

We see that the percentage of sets we find varies along with the time,
though a majority of sets can almost always be found within 5 minutes.
With this additional primitive, attackers can implement Prime+Probe to
build a covert channel, as we show in Section 7, or execute some other
cache attack, e.g., Rowhammer [31].

4.4 Full Cache Evictions

One of the first observations while measuring cache hit rates on GPUs
is that some events evict a sizeable portion of the cache. Whenever an
element on the screen is redrawn or the frame buffer is refreshed for some
other reason, this occupies a large part of the cache. Depending on the
total size of the L2 cache and what is being drawn, this may even evict
the entire cache. On the one hand, this presents as noise during some
attacks; each measurement that happens after a draw event is tainted. On
the other hand, these evictions are indicators of activity on screen and
can therefore be used as a side channel to user activity. We describe an
inter-keystroke timing attack based on this primitive in Section 5.

118

5 Full-Eviction Keystroke Monitoring

5 Full-Eviction Keystroke Monitoring

Starting from the observation that drawing elements on screen evicts a
significant part of the cache, we build an attack that records inter-keystroke
timings by observing cache contention. As shown in prior work [33, 37,
45, 57], inter-keystroke timings carry significant information and can lead
to password recovery.

While subsequent sections of this paper present conventional benchmarks
for high-frequency side channels, this section focuses on low-frequency
benchmarking. Despite the infrequent occurrence of events, achieving a
high detection rate is crucial for accurately measuring inter-keystroke
timings. In addition, keystroke profiling represents a practical application
of our attack, as our setup mirrors the most prevalent end-user scenario:
a computer equipped with a single discrete GPU engaged in internet
browsing. As the full WebGPU standard becomes increasingly integrated
into mobile devices, this scenario will gain further relevance in the future.
Our approach for this attack is similar to Naghibijouybari et al. [34].

5.1 Construction

The attack is based on the following observation: for each character typed,
the text box is re-rendered. We can measure this as the eviction of a
certain amount of the cache, up to the entire cache, correlated with the
size of the rendered area. To see this effect, we use a buffer that covers
a part of the cache size and repeatedly measure its hit rate. Whenever
we see a hit rate below a well-chosen threshold, e.g., 50%, we record the
timestamp as an event. The time resolution of this attack is determined
by how fast our attacking shader can complete its measurement, which is
determined by the total buffer size. Though on some GPUs we see that a
small percentage of the cache is already enough to observe keystrokes, we
find that for most, 35% is a good tradeoff between detection and speed.
The screen resolution, size of the text box and zoom level all contribute
to the amount of evicted cache lines.

After recording raw traces, we filter based on two observations. First,
very close measurements (<25ms difference) are unlikely to be separate
keystroke events. Second, after a short break in typing, the cursor starts
blinking at a 530ms interval on Windows. Filtering these sources of noise
removes most false positives. Figure 6.3 shows the trace of an attacker

119

6 GPU Cache Attacks from the Browser

Table 6.4: Efficacy of WebGPU inter-keystroke timing detection on a variety of
GPUs for 100 keystrokes.

Performance Metrics False True Interval Error

F1 score precision recall Positive Negative Positive x̄ σ median
GPU ms ms ms

A
M
D RX 6800 XT 0.27 0.16 0.99 533 1 99 133.58 101.18 121.50

RX 6900 XT 0.29 0.17 0.99 490 1 99 126.05 119.22 86.00

N
V
ID

IA

GTX 1070 0.97 0.99 0.96 1 4 96 −0.28 4.25 0.00
GTX 1650 0.82 0.70 0.99 42 1 99 12.13 20.43 1.00
GTX 1660 Ti 0.87 0.78 0.98 27 2 98 5.73 26.52 0.00
RTX 2070 SUPER 0.86 0.78 0.97 28 3 97 19.81 57.81 0.00
RTX 3060 Mobile 0.98 0.99 0.98 1 2 98 0.01 1.49 0.00
RTX 3060 Ti 0.97 0.98 0.97 2 3 97 1.76 21.12 0.00
RTX 3080 0.94 0.92 0.96 8 4 96 1.27 14.44 0.00
Quadro P620 0.98 0.99 0.97 1 3 97 −5.57 54.90 0.00

typing at varying speeds compared to the ground truth on our NVIDIA
RTX 3080. We can see that while we measure some spurious events, most
timings are accurate.

5.2 Evaluation

We tested this attack with a small text box and generated input directly
injected from javascript, randomly drawing inter-keystroke timings from
distributions similar to the patterns observed by Song et al. [57]. Table 6.4
shows the tested GPUs and their F1 scores and inter-keystroke timing
errors. During this test, no other visual noise was present, similar to the
static login pages of many websites. The consistently high recall shows
that virtually no keystrokes are missed on most cards. However, even after
filtering, the recall shows that there is a low average of false positives
for most cards. AMD once again behaves differently. Despite the high
recall, with the low precision, we can consider this attack mostly failed
or severely degraded. The results suggest either a high level of noise or,
more likely, frequent misclassification of hits as misses due to the close
timing differences visible in Table 6.1.

An interesting example for the timing resolution is the NVIDIA RTX
4090. Because of its large L2 cache of 72MB, simply measuring cache
contention requires a disproportionately large measurement set. This is
because the cache footprint of a text box does not increase with the cache
size. While all other cards easily reach a sampling rate below 15ms, the
huge buffer means that each measurement takes more than 200ms, making
an inter-keystroke timing attack with this method impractical.

120

6 AES Key Recovery with Browser-based Templating

5,630 6,310 7,080 7,950 8,920 10,000 11,200 12,600 14,100
0

1,000

2,000

time [ms]

∆
t
[m

s] raw detections inferred keystrokes true keystrokes

Figure 6.3: Inter-keystroke timing recovery on a NVIDIA RTX 3080. The raw
activity detections (green) show prominent cursor blinking that can be
filtered out very well, which leaves an accurate trace of inter-keystroke
timings (red).

We also observe that on Windows, the blinking of the cursor causes
slightly less eviction than a typed character. One possible explanation is
that instead of re-rendering the entire text box, the cursor is drawn on
top.

6 AES Key Recovery with Browser-based
Templating

Recovering AES keys from vulnerable T-table implementations has become
a benchmark for assessing how fine-grained side-channel attacks and
microarchitectural attacks are. This case study has also been adopted in
GPUs [16, 28, 36, 42]. Additionally, AES has been proposed as a use case
for general-purpose GPU computing since 2007 [22, 54].

Unlike previous research, our method adopts a set-agnostic approach,
eliminating the need to understand cache set sizes or mappings. Traditional
set-based strategies would require extensive profiling of cache sets and
mapping of T-table accesses. Our methodology bypasses this initial step,
focusing on locating addresses congruent with T-table lines.

6.1 Threat Model

Like earlier, we assume our attacker embeds some malicious JavaScript in
a webpage the victim is browsing for several minutes. The victim runs a
GPU-based AES implementation that can be queried for encryption with

121

6 GPU Cache Attacks from the Browser

a chosen plaintext and key. The attacker aims to recover the AES key
used by a victim. This scenario could be found in the case of an SFTP
server, where the chosen plaintext and key represent downloading our own
file. In order to implement a last-round attack, we assume the attacker
has access to the victim’s ciphertexts, but not the plaintext or the key.

6.2 AES Implementation Details

The native encryption service is an AES CUDA implementation, which
uses combined T-tables for all rounds. This increases the difficulty of the
attack compared to implementations that use separate tables for the last
round, as all other rounds influence cache hits on table entries. As GPU
cache line width is usually 128B, and each table is composed of 256 4-byte
entries, each table fits in exactly 8 cache lines, for a total of 32 cache lines
filled with table entries.

6.3 Attack Methodology

Our strategy, akin to the keystroke attack (Section 5), involves allocating
a large buffer to occupy a significant cache portion, executing an AES
encryption, and then identifying evicted buffer offsets using Prime+Probe.
In an ideal scenario with a minimalistic AES kernel, evicted offsets would
correlate with the table or the encryption’s inputs and outputs. This is
because, from our observation, GPUs implement a deterministic LRU-
like eviction policy. This means that when one address from a full set is
evicted, measuring all others in the same order used to place them in the
set will cause a cascade of cache misses, as each new access will result
in a miss, overwriting the next address. In practice, we find that kernel
loading introduces substantial cache occupancy, leading to measurement
noise. Our primary challenge is discerning the tables amidst this noise,
and profiling each table’s cache lines to track their access. We employ
chosen keys and specially crafted plaintexts to deduce the relationship
between our offsets and table entries. With this mapping, we can execute
the traditional last-round attack [51, 55]. Hereafter, we delve into each
step and the optimizations we employed to achieve a reliable key recovery
in a drive-by manner.

Profiling T-Tables. The initial profiling phase allocates a sizable array
(optimal size varies across models, even with similar cache sizes) in the

122

6 AES Key Recovery with Browser-based Templating

browser, ensuring kernel loading and encryption evict specific offsets,
and templates the AES encryption’s memory accesses. Using random
plaintexts, we would expect a random distribution of the access to each
entry of the tables, thereby causing a predictable eviction frequency of
the set-congruent offsets (at a frequency of 0.995). On the contrary, the
offsets that are set-congruent to the memory required for kernel loading
would be evicted every time, and other noise artifacts should be sparse.
Our differential access templating, using a fixed key and chosen plaintexts,
enhances profiling reliability and efficiency.

The strategy involves pre-generating 32 plaintexts pi with a fixed key,
ensuring the encryption of each plaintext access all but one cache line
within the tables, and a reference plaintext pr, which encryption accesses
all cache lines. Comparing memory accesses during the encryption of pi
and pr reveals offsets congruent to cache line i. This process identifies
offsets that are set congruent to each cache line, though some cache lines
may remain undetected due to kernel loading noise. This refined offset
list streamlines the attack, focusing on a reduced subset of offsets.

Last Round Attack. As we are performing a last-round attack, the
only requirement is that we can make measurements during encryptions
by the victim, and observe the ciphertext. The attack aligns with the
non-elimination method presented by Neve and Seifert [53]. The idea is,
given a collection of ciphertexts and the access to T-tables entries that
happened during the encryptions, to remove possible values on the key
bytes by looking for cache lines that were not accessed in the process. For
each cache line not accessed during the encryption, we can remove all
last-round key bytes that would have resulted in a memory access during
the last round, based on the ciphertext value. Given the cache line size
of GPUs, we get up to 24 bit of information on the last-round key every
time a cache line is not accessed.

The more cache lines we can monitor, the more likely we are to reduce
the search space for the last-round key. Once we get below 240 candidates,
we switch to an exhaustive search of the key.

6.4 Evaluation

For our evaluations, we focus on a CUDA-based target implementation,
rendering evaluations on AMD cards infeasible. Somewhat breaking with

123

6 GPU Cache Attacks from the Browser

Table 6.5: Evaluation of the AES Last Round Attack (LRA) on two NVIDIA
cards. All values are average across n = 50 runs.

GPU Measurements Time (min)
(x1000) Profiling LRA Total

RTX 3060 Mobile 9.3±1.6 0.23±0.1 5.7±0.9 6.0±1.0
RTX 3060 Ti 9.8±3.4 0.23±0.1 5.9±1.9 6.1±2.0

the theme of this work, the nature of this attack necessitates some pa-
rameter adjustments, which adds complexity and extends the evaluation
duration compared to other attacks. Therefore, we settle on evaluating
our attack on two recent cards: NVIDIA RTX 3060 Ti and NVIDIA RTX
3060 Mobile. We run all our experiments on Ubuntu 22.04 and Chromium
117 but we also have observed consistent results Chrome versions 112 to
115.

Table 6.5 showcases our findings. It highlights the average duration of
the attack’s primary steps and the mean number of encryptions required
for successful key recovery. Notably, both cards yield similar results,
recovering the key in 6min. The average encryptions needed are 9300 and
9800, respectively. The uniformity of results across GPUs, coupled with
the low standard deviation, underscores the stability and reproducibility
of our attack.

Profiling the T-table takes on average 13 s. The variability in this phase
predominantly stems from the inconsistent repetition of profiling until an
optimal buffer size is identified, enabling sufficient eviction observation.
Typically, a single profiling session lasts 6 s. Once profiling is complete,
the same session can be repurposed to divulge multiple AES keys, thereby
reducing the attack duration to the sample collection time needed in the
concluding step.

Profiling often does not provide a complete mapping for every cache line.
The disparities in measurements and time allocated for the last-round
attacks correlate directly with the number of cache lines we can monitor.
On average, we can spy on 20/32 cache lines. The NVIDIA RTX 3060 Ti
exhibits marginally less consistent results, occasionally mapping fewer
cache lines, leading to an elongated attack duration and increased standard
deviation. Our evaluation on both cards consistently had a 100% success
rate.

124

7 A Prime+Probe Covert Channel

7 A Prime+Probe Covert Channel

A covert channel is a channel that is constructed on top of some shared
resource that is not meant for data transmission. This allows an attacker
to transmit data between two domains that should be isolated or strictly
monitored. Because both sender and receiver work together to transmit
data, covert channels are a valuable benchmark for any side channel’s
bandwidth. In a traditional Prime+Probe cache covert channel, the sender
transmits bits by priming (evicting) cache sets to transmit a binary 1,
which the receiver can later detect by probing (measuring) its own lines in
the same set. With our reliable timer and a method to find the required
eviction sets (see Section 4), we can now construct a Prime+Probe cache
covert channel for the L2 cache.

The sender is a C++ application that uses CUDA. In this scenario, it is a
malicious application without network privileges but with access to the
GPU. The sender’s goal is to exfiltrate sensitive data via a GPU covert
channel. The receiver runs in a website the user visits at the same time.
This may be a legitimate website with injected malicious JavaScript, or a
website the user is led to in some way.

7.1 Construction

We write the Sender S in C++ and CUDA, making full use of the native
high-resolution timer. The browser-based Receiver R uses a combina-
tion of JavaScript and WGSL. Using our eviction set construction (see
Section 4.3), R starts by mapping all cache sets.

Setup - CJAG. As neither R nor S have absolute labels for their
respective eviction sets, the first step is to communicate the shared sets
from S to R. For this, we implement a GPU-friendly version of the cache
jamming agreement (CJAG) proposed by Maurice et al. [38]. In CJAG, S
alternates between jamming a set, i.e., evicting it continuously for some
time, and probing the set for a slightly longer period. Meanwhile, R probes
all sets continuously until the jammed set is detected. Then, R switches
to a longer period of jamming, so that S knows the set has been received
and moves on.

Unlike the CJAG approach on the CPU, distinct shaders do not execute
concurrently on the GPU, making simultaneous detection and jamming
infeasible. Rather than employing shaders that continuously loop through

125

6 GPU Cache Attacks from the Browser

jamming or detection, we need to segment them into single invocations.
Depending on the frequency of driver interruptions, we might otherwise
see long shader executions that rarely interface with each other.

Additionally, we want to use a large number of sets (e.g., 1 024). Serial
transmission, as implemented in CJAG, is, therefore, impractical. Instead,
we enhance the CJAG framework by leveraging the inherent parallelism of
our GPU, enabling both S and R to jam and detect all sets concurrently.
Here, copying to and from shaders is the main bottleneck, with 3ms on
average. Thus, the time difference between measuring a single set versus 64
sets per shader invocation is marginal. So, we combine both as a trade-off
and measure sets in parallel on 16 threads. At this stage, S also swaps
out any sets that are not detected from R’s jamming, thus ensuring that
all sets are fully functioning for both parties. After a selection of 1 024
sets has been communicated, S switches to jamming on only half of all
sets. The specific half is dictated by the current bit in the index number
of its cache sets. In this way, S can transmit the order of all 1 024 sets in
log2(1024) = 10 steps by jamming different 512 sets for each bit. After
all sets have been communicated, data transmission can begin. Table 6.6
shows that it takes 14 s to 28 s to transmit 1024 sets.

Transmission. After the set jamming agreement has been completed,
the transmission is entirely one-way. We opt for a channel design where
sender and receiver are synchronized with the wall clock. In native C++,
this provides at least µs accuracy, while in browsers, this is limited to
100 µs. We choose a default transmission window length of 5ms for our
packets. This length is limited not only by the accuracy of the timer but
also by the time it takes for a shader to run. To compensate for the long
packet duration, we use the GPU’s parallelism to transmit on 1 024 sets
concurrently.

While eviction for S is as simple as accessing many addresses in parallel in
a loop,R still needs to measure time. ChallengeC1 (see Section 4.1) means
that we need to separate each parallel thread into different workgroups to
prevent lockstep execution. Additionally, individual sets always need to
be measured by the same thread, as ordering between these accesses is
crucial for the eviction policy.

As observed in Section 4.4, GUI-related events can introduce undesirable
noise. Similarly, the operating system can deschedule S for periods of
time. To reduce such noise, we adopt the following strategies. First, we

126

7 A Prime+Probe Covert Channel

Table 6.6: Transmission results of our Prime+Probe covert channel from a native
CUDA sender to a WebGPU receiver in the browser, n = 10. True
channel capacity can vary widely either due to general noise, incorrect
set transmission during CJAG or too few correct reads per window,
i.e., the number of correctly received pairs within the transmission
window.

Configuration CJAG Bandwidth Bit Error Ratio

Setstx Window Reads/window x̄ Set Tx Raw True x̄ True σ x̄ σ
GPU ms s Byte/s Byte/s Byte/s % %

N
V
ID

IA

RTX 2070 SUPER 1 024 6.0 3.3 14.6 10 666.7 8 963.0 360.8 2.4 0.7
1 024 5.0 2.2 14.0 12 800.0 8 962.0 286.5 5.3 0.6

RTX 3060 Ti 1 024 6.0 2.9 16.4 10 666.7 9 004.9 271.4 2.3 0.5
1 024 5.0 1.9 15.7 12 800.0 7 272.0 1 252.5 9.1 3.1

RTX 3080 1 024 5.0 2.7 27.8 12 800.0 10 897.5 698.3 2.2 1.0
1 024 4.0 1.9 28.2 16 000.0 5 964.5 1 048.6 15.9 2.7

employ a majority vote measurement approach where each set is mea-
sured as often as possible within a transmission window. By counting
evictions and non-evictions, we obtain the result through a majority vote.
Second, we access the addresses within each set in an alternating order.
This ensures a consistent read from the most to the least-recently-used
cache line, precluding the cascade of self-evictions that would arise if
the oldest cache line were evicted. This lets us determine how much of
a set was evicted and easily identify low-level noise. Lastly, we use a
differential measurement scheme. Here, a pair of sets transmit 1 bit, and
measurements wherein neither or both sets are evicted are discarded. In a
valid transmission, precisely one set is evicted for every pair, effectively
halving our transmission rate and resulting in a total packet length of
64B. Consequently, the raw transmission speed is fixed by the parameters
to a default of 12.8 kB/s.

7.2 Evaluation

We evaluate the covert channel on 3 NVIDIA GPUs; the RTX 2070 SUPER,
3060 Ti and 3080. The GTX 1070 and Quadro P620’s Pascal architecture
does not support all the instructions used by the CUDA sender. AMD
cards do not support CUDA, though as set-finding fails on AMD (see
Section 4.3) the attack would not work either way. The GTX 1650 and
GTX 1660 Ti both support the instructions as well as set-finding, but
we could not reliably establish communication because of malfunctioning
jamming detection in CUDA.

127

6 GPU Cache Attacks from the Browser

Table 6.6 shows the configuration and transmission details for all tested
devices. We can see that as we shrink the transmission window, average
reads in the window go down, and the error rate increases. At 4ms, the
NVIDIA RTX 3080 shows a decrease in true channel capacity compared to
5ms for this reason. Because of it’s higher clock speed, the 3080 supports
faster transmission than the two other cards. Its average true bandwidth
in its fastest configuration is, therefore, 10.9 kB/s, at a BER of 2.2%.
Though our channel is non-optimal and slower than prior work, it clearly
demonstrates the viability of using WGSL code embedded in a website as
a covert channel receiver.

8 Discussion

Supported Devices. Our research primarily targets recent NVIDIA
GPUs, leading to worse results on AMD cards, as we only had very limited
access. Despite these architectural differences, WebGPU clearly enables
generic cache attacks from browsers. At the time of writing, WebGPU is
already integrated into Android’s Chrome Canary, though some features
are not yet available. Once parity is achieved, the potential for browser-
based GPU attacks could significantly increase.

Limitations. We evaluated our proof-of-concept on various operating
systems using Chrome and Chromium versions 112-117. Despite identifying
functional combinations for all devices, the WebGPU implementation
remains inconsistent, as evidenced by our experiments. The same code
might succeed in one version and unexpectedly fail in another, potentially
due to variations in WebGPU’s code compilation beyond user control. We
observed notable differences between Linux and Windows (see Table 6.1).
While the exact cause—whether driver, browser, or WebGPU’s underlying
framework (e.g., Vulkan vs. DirectX)—remains unclear, the fundamental
time discrepancy supports the viability of these attacks.

Countermeasures. The attacks shown in this paper are generic and rely
on only a few assumptions. Nevertheless, steps can be taken to limit the
attack surface. As already suggested in the current WebGPU draft, timers
can be made optional, very coarse, or ideally removed altogether [11].
However, as we have shown, as long as coherent memory is available
between concurrent threads, it is possible to construct a timer. If, however,
the coherency mechanism (in our case, atomic operations) were to be

128

9 Conclusion

changed, such a timer would quickly fail. Of course, this could cause
normal workloads to malfunction unless specifically redesigned.

The simplest and most effective solution against a drive-by attack scenario
is, in our opinion, to treat GPU access in the browser as a sensitive resource,
like microphone or camera access, that requires permission before use.
For WebGL and WebGPU, this is not currently the case (Firefox 114,
Chrome 115, Chromium 117). This would also prevent malicious parties
from stealthily using local computing resources for, e.g., cryptomining.

Disclosure. We have disclosed our results to Mozilla, AMD, NVIDIA
and the Chromium team.

9 Conclusion

GPUs have become a ubiquitous computation resource and as such require
increased security scrutiny. We showed that it is possible to mount powerful
GPU cache side-channel attacks directly from within the browser. We
demonstrated that our basic attack primitives are generic and automated
to the extent that we can run them without manual intervention on
a set of 11 desktop GPUs from 5 different generations and 2 vendors,
running in the browser through WebGPU. We showed that the massive
parallelism of modern GPUs can be leveraged in parallelized eviction set
construction algorithms. Our three case studies emphasized the relevance
of our work: Our inter-keystroke timing attack, with F1-scores between
82% and 98%, exposes sensitive user input to an attacker. Our set-agnostic
end-to-end attack on GPU-based AES encryption leaks full AES keys in
6min, showing that also cryptographic secrets are exposed to browser-
based attackers. Our native-to-browser Prime+Probe covert channel shows
that the bandwidth of this channel can reach average transmission rates
of up to 10.9 kB/s. Since our attacks require no user interaction, they can
be implemented as dangerous drive-by attacks. Thus, we conclude that
GPU access should be treated as a similar security and privacy risk as
other devices and resources that require explicit user consent.

Acknowledgments

This research is supported in part by the European Research Council
(ERC project FSSec 101076409), and the Austrian Science Fund (FWF

129

project NeRAM 10.55776/I6054). Additional funding was provided by a
generous gift from Red Hat. Any opinions or recommendations expressed
are those of the authors and do not necessarily reflect the views of the
funding parties. We also thank Gregor Heindl for his generous donation
of time and hardware.

References

[1] AMD. AMD RDNA Whitepaper. 2023. url: https://www.amd.c
om/system/files/documents/rdna-whitepaper.pdf (p. 103).

[2] Google. Chrome ships WebGPU. 2023. url: https://developer
.chrome.com/blog/webgpu-release/ (p. 105).

[3] Khronos Group. WebGL Specification. https://registry.khron
os.org/webgl/specs/1.0.3/. 2023 (p. 104).

[4] Khronos. OpenCL. 2023. url: https://www.khronos.org/openc
l/ (p. 99).

[5] Mozilla. WebGPU API. 2023. url: https://developer.mozilla
.org/en-US/docs/Web/API/WebGPU_API (p. 105).

[6] Hoda Naghibijouybari, Esmaeil Mohammadian Koruyeh, and Nael
B. Abu-Ghazaleh. Microarchitectural Attacks in Heterogeneous
Systems: A Survey. In: ACM Comput. Surv. 55.7 (2023), 142:1–
142:40 (pp. 99, 105).

[7] NVIDIA. CUDA C++ Programming Guide. 2023 (pp. 99, 102,
104).

[8] NVIDIA. Kernel Profiling Guide. 2023 (p. 103).

[9] Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel
Genkin, and Yuval Yarom. Hot Pixels: Frequency, Power, and Tem-
perature Attacks on GPUs and ARM SoCs. In: USENIX Security.
2023 (p. 107).

[10] W3C. WebGPU. 2023. url: https://www.w3.org/TR/webgpu
(p. 105).

[11] W3C. WebGPU - W3C Working Draft - Timing attacks. 2023. url:
https://www.w3.org/TR/webgpu%5C#security-timing (pp. 100,
128).

[12] W3C. WebGPU Security Considerations. 2023. url: https://www
.w3.org/TR/webgpu%5C#security-considerations (p. 100).

130

https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://developer.chrome.com/blog/webgpu-release/
https://developer.chrome.com/blog/webgpu-release/
https://registry.khronos.org/webgl/specs/1.0.3/
https://registry.khronos.org/webgl/specs/1.0.3/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGPU_API
https://www.w3.org/TR/webgpu
https://www.w3.org/TR/webgpu%5C#security-timing
https://www.w3.org/TR/webgpu%5C#security-considerations
https://www.w3.org/TR/webgpu%5C#security-considerations

References

[13] W3C. WebGPU Shading Language - Terminology and Concepts.
2023. url: https://www.w3.org/TR/WGSL%5C#uniformity-conc
epts (p. 109).

[14] Sankha Baran Dutta, Hoda Naghibijouybari, Arjun Gupta, Nael
B. Abu-Ghazaleh, Andres Marquez, and Kevin J. Barker. Spy in
the GPU-box: Covert and Side Channel Attacks on Multi-GPU
Systems. In: ISCA. 2022 (pp. 99, 106, 112, 113).

[15] Shujiang Wu, Jianjia Yu, Min Yang, and Yinzhi Cao. Rendering
Contention Channel Made Practical in Web Browsers. In: USENIX
Security. 2022 (p. 105).

[16] Jaeguk Ahn, Cheolgyu Jin, Jiho Kim, Minsoo Rhu, Yunsi Fei,
David Kaeli, and John Kim. Trident: A hybrid correlation-collision
GPU cache timing attack for AES key recovery. In: HPCA. 2021
(pp. 99, 106, 121).

[17] Patrick Cronin, Xing Gao, Haining Wang, and Chase Cotton. An
Exploration of ARM System-Level Cache and GPU Side Channels.
In: ACSAC. 2021 (pp. 99, 107).

[18] Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh,
Andres Marquez, and Kevin Barker. Leaky buddies: Cross-
component covert channels on integrated cpu-gpu systems. In:
ISCA. 2021 (pp. 106, 108, 109).

[19] Khronos WebGL Working Group. WebGL 2.0 Compute. https:
//registry.khronos.org/webgl/specs/latest/2.0-compute/.
2021 (p. 104).

[20] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Ver-
bauwhede. Systematic Analysis of Randomization-based Protected
Cache Architectures. In: S&P. 2021 (pp. 113, 114).

[21] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel
Genkin, Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript
0: Overcoming browser-based side-channel defenses. In: USENIX
Security. 2021 (p. 105).

[22] Cihangir Tezcan. Optimization of advanced encryption standard
on graphics processing units. In: IEEE Access 9 (2021), pp. 67315–
67326 (pp. 99, 121).

[23] Anne van Kesteren. Safely reviving shared memory. 2020. url:
https://hacks.mozilla.org/2020/07/safely-reviving-shar

ed-memory/ (p. 100).

131

https://www.w3.org/TR/WGSL%5C#uniformity-concepts
https://www.w3.org/TR/WGSL%5C#uniformity-concepts
https://registry.khronos.org/webgl/specs/latest/2.0-compute/
https://registry.khronos.org/webgl/specs/latest/2.0-compute/
https://hacks.mozilla.org/2020/07/safely-reviving-shared-memory/
https://hacks.mozilla.org/2020/07/safely-reviving-shared-memory/

[24] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. SGAxe: How SGX fails in practice. 2020 (p. 99).

[25] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad
Abdullah Al Faruque. Leaky DNN: Stealing Deep-Learning Model
Secret with GPU Context-Switching Side-Channel. In: DSN. 2020
(pp. 99, 106).

[26] Saksham Jain, Iljoo Baek, Shige Wang, and Ragunathan Rajkumar.
Fractional GPUs: Software-based compute and memory bandwidth
reservation for GPUs. In: IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS). 2019 (p. 112).

[27] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo
Scarpazza. Dissecting the NVidia Turing T4 GPU via microbench-
marking. In: arXiv:1903.07486 (2019) (p. 112).

[28] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. Exploiting bank
conflict-based side-channel timing leakage of gpus. In: ACM TACO
(2019) (pp. 99, 106, 121).

[29] Moinuddin K Qureshi. New attacks and defense for encrypted-
address cache. In: ISCA. 2019 (pp. 113, 114).

[30] Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of
Finding Eviction Sets. In: S&P. 2019 (p. 108).

[31] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU. In: S&P. 2018 (pp. 99, 106, 108, 118).

[32] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P
Scarpazza. Dissecting the NVIDIA volta GPU architecture via
microbenchmarking. In: arXiv:1804.06826 (2018) (p. 112).

[33] John Monaco. SoK: Keylogging Side Channels. In: S&P. 2018
(p. 119).

[34] Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian, and Nael
Abu-Ghazaleh. Rendered Insecure: GPU Side Channel Attacks are
Practical. In: CCS. 2018 (pp. 99, 100, 106, 119).

[35] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU.
In: NDSS. 2017 (pp. 100, 109).

[36] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A novel side-channel
timing attack on GPUs. In: Proceedings of the on Great Lakes
Symposium on VLSI. 2017, pp. 167–172 (pp. 99, 106, 121).

132

References

[37] Moritz Lipp, Daniel Gruss, Michael Schwarz, David Bidner, Clé-
mentine Maurice, and Stefan Mangard. Practical Keystroke Timing
Attacks in Sandboxed JavaScript. In: ESORICS. 2017 (p. 119).

[38] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (p. 125).

[39] Hoda Naghibijouybari, Khaled N. Khasawneh, and Nael B. Abu-
Ghazaleh. Constructing and characterizing covert channels on GPG-
PUs. In: MICRO. 2017 (pp. 99, 106).

[40] NVIDIA. NVIDIA Tesla v100 GPU architecture. 2017. url: http
s://images.nvidia.com/content/volta-architecture/pdf/v

olta-architecture-whitepaper.pdf (p. 103).

[41] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Ste-
fan Mangard. Fantastic Timers and Where to Find Them: High-
Resolution Microarchitectural Attacks in JavaScript. In: FC. 2017
(pp. 100, 109).

[42] Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A complete key
recovery timing attack on a GPU. In: HPCA. 2016 (pp. 99, 106,
121).

[43] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security. 2016 (p. 109).

[44] Xinxin Mei and Xiaowen Chu. Dissecting GPU memory hierarchy
through microbenchmarking. In: IEEE Transactions on Parallel
and Distributed Systems 28.1 (2016) (p. 112).

[45] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security. 2015 (p. 119).

[46] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Systematic
reverse engineering of cache slice selection in Intel processors. In:
Euromicro Conference on Digital System Design. 2015 (p. 112).

[47] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (pp. 105, 108).

133

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

[48] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Complex Addressing Using Performance Counters. In: RAID. 2015
(p. 112).

[49] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In: CCS. 2015 (pp. 105,
108).

[50] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot
Heiser. Mapping the Intel Last-Level Cache. In: Cryptology ePrint
Archive, Report 2015/905 (2015) (p. 112).

[51] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. Wait a minute! A fast, Cross-VM attack on AES. In: RAID.
2014 (p. 122).

[52] Mozilla. SharedArrayBuffer. 2012. url: https://developer.moz
illa.org/en-US/docs/Web/JavaScript/Reference/Global_Ob

jects/SharedArrayBuffer (p. 100).

[53] Michael Neve and Jean-Pierre Seifert. Advances on access-driven
cache attacks on AES. In: SAC. Springer, 2007 (p. 123).

[54] Takeshi Yamanouchi. GPU Gems 3 - AES Encryption and Decryp-
tion on the GPU. 2007. url: https://developer.nvidia.com/g
pugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-e

ncryption-and-decryption-gpu (pp. 99, 121).

[55] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks
against AES. In: CHES. 2006 (p. 122).

[56] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 105,
108).

[57] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing
Analysis of Keystrokes and Timing Attacks on SSH. In: USENIX
Security. 2001 (pp. 119, 120).

134

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-36-aes-encryption-and-decryption-gpu

7
Scatter and Split Securely:

Defeating Cache Contention and
Occupancy Attacks

Publication Data

Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder, Thomas
Unterluggauer, Stefan Mangard, and Daniel Gruss. Scatter and Split Se-
curely: Defeating Cache Contention and Occupancy Attacks. In: USENIX
Security. 2023

Contributions

Main author.

135

7 SassCache: Scatter and Split Securely

Scatter and Split Securely: Defeating Cache
Contention and Occupancy Attacks

Lukas Giner1, Stefan Steinegger1,4, Antoon Purnal2, Maria
Eichlseder1, Thomas Unterluggauer3, Stefan Mangard1,

and Daniel Gruss1

1Graz University of Technology,
2imec-COSIC, KU Leuven,

3Intel Corporation,

Abstract

In this paper, we propose SassCache, a secure skewed associative cache
with keyed index mapping. For this purpose, we design a new two-layered,
low-latency cryptographic construction with configurable output coverage
based on state-of-the-art cryptographic primitives. Based on this construc-
tion, SassCache is the first secure randomized cache with secure spacing.
Victim cache lines automatically hide in locations the attacker cannot
reach after less than 1 access on average. Consequently, attackers cannot
evict the cache line, no matter which and how many memory accesses
they perform. Our security analysis shows that all existing techniques for
eviction set construction fail, and state-of-the-art attacks only apply to 1
in 3 million addresses, where SassCache is still as secure as ScatterCache.
Compared to standard caches, SassCache has a single-threaded perfor-
mance penalty of 1.75% on the last-level cache hit rate in the SPEC2017
benchmark, and an average decrease of 11.7 p.p. in hit rate for MiBench,
GAP and Scimark for our high-security settings.

1 Introduction

Caches hide the memory latency in modern CPUs. Modern Intel CPUs
organize caches in slices, sets, and ways, which are selected based on the
physical address. Slices are independent caches comprised of sets. Each
set has multiple ways, i.e., the 64B cache lines. Memory mapping to the

4Work done while affiliated with Graz University of Technology.

136

1 Introduction

same set is called congruent. An attacker can use congruent addresses
to measure contention or to evict cache lines of a victim process. The
most notable cache attack exploiting set contention is Prime+Probe [34,
43, 46, 52, 58, 64]. But even without direct contention within one cache
set, an attacker can still mount a cache-occupancy attack, where the
attacker only observes aggregated cache usage. Cache-occupancy attacks
have fewer requirements but contention-based attacks are more powerful
and dangerous.

Contention-based attacks [5, 16, 22, 26, 29, 30, 40, 47, 57, 61, 63] are
hindered by the scrambling of address-cache-line mappings in secure
randomized caches. Recent designs [5, 16, 22, 26, 29] use cryptography
to randomize mappings in hardware with a secret key. This is backward-
compatible on the software level and maintains certain sharing capabilities.

While randomized caches are a promising solution to eviction-based at-
tacks [3, 9], cache collisions still exist due to limited cache sizes. Rekeying
alleviates the problem, but the best rekeying interval is difficult to deter-
mine for yet unknown attacks and known attacks require high rekeying
intervals with a significant performance cost. Furthermore, some previous
proposals suffer from cryptanalytic flaws [3, 8]. Hence, we ask the research
questions:

Can a secure randomized cache prevent contention between any attacker
cache line and a victim cache line in most cases? Which cryptographic
constructions provide this property while maintaining high performance?

In this paper, we propose SassCache, a secure cache design with better
security guarantees than previous randomized caches and better perfor-
mance than static isolation. SassCache is a skewed set-associative cache
with a keyed index-derivation function per security domain and a novel
isolation property. Each security domain has access to a different and only
partially overlapping part of the cache. Once a victim cache line is in a
location the attacker cannot reach, there is no possibility for the attacker
to evict the cache line. In our evaluation we see a victim cache line hidden
from the attacker after less than 1 eviction on average.

At the core of SassCache is a new two-layered cryptographic construction
with configurable output distribution determining reachable cache lines.
Inspired by QARMA [31], we propose QARTA, tailored to our functional (i.e.,
uncommon bit sizes), latency, and security requirements.

137

7 SassCache: Scatter and Split Securely

In the recommended configuration, the attacker cannot build an eviction
set for 99.999 97% of the victim’s addresses. For the remaining 0.000 03%,
SassCache maintains the same security as previous secure skewed caches.
Even cache-occupancy attacks are not feasible anymore because the hiding
effects affect this channel equally. We evaluate this property and discover
that an attacker can observe the occupancy of OpenSSL AES T-Tables in
less than 0.000 5% of cases and the occupancy of secret-dependent cache
lines in mbedTLS RSA-4096 in less than 0.000 3% of cases.

The basic functionality of SassCache is fully compatible with standard
caches and, hence, simple to integrate into existing CPU architectures. Sass
Cache provides full compatibility with legacy software, but to fully harness
its security, software has to configure and switch security domains. Our
main use case for SassCache are multi-tenant cloud systems, as they offer
high degrees of parallelism between clearly defined security domains (i.e.,
tenants). Here, SassCache provides inherent quality-of-service properties.
We evaluate this in SPEC2017 with multiple other cache-intense tenants
running in parallel, showing competitive performance.

We implemented SassCache in gem5, our own cache simulator1, and in
CacheFX [1]. We evaluate the impact on performance and cache-hit rate.
Compared to a set-associative LRU cache, SassCache has a performance
penalty of only 1.75% on the cache hit rate in SPEC2017, similar to
previous secure caches. In MiBench-small, the average cache hit rate of
SassCache is 16% lower than for a set-associative LRU cache; in scimark2,
it is 23.6% higher.

Contributions. In summary, our main contributions are:

• We design a novel low-latency cryptographic function with a configurable
output distribution for secure caches.

• We propose SassCache, a secure cache that integrates this function,
eliminating the attacker’s capability of building an eviction set for
99.999 97% of the addresses.

• We show that for the remaining 0.000 03%, SassCache maintains the
security level of previous secure caches.

• SassCache offers competitive performance, with only 1.75% average
overhead on the LLC hit rate in SPEC2017, compared to a set-associative
LRU cache.

1https://github.com/IAIK/CacheSim

138

https://github.com/IAIK/CacheSim

2 Background

Outline. Section 2 provides background, Section 3 the threat model,
Section 4 the design, Section 5 our cryptography, and Section 6 our
implementation. Section 7 and Section 8 discuss security and performance.
Section 9 concludes.

2 Background

In this section, we discuss non-secure and secure caches and their attack
surface and mitigation strategies.

2.1 Caches

Caches hide memory latency by buffering data. In set-associative caches, a
memory address can only be cached in a (fixed) subset of cache lines, a so-
called cache set. Addresses that map to the same set are called congruent.
When loading data from, the cache replacement policy determines which
cache line in a set to evict. Each cache line has a tag that uniquely identifies
a cached address. CPU caches can derive indices and tags from the virtual
or physical address.

Modern CPUs have multiple cache levels and use physical tags throughout
the cache hierarchy. The lower cache levels, e.g., the L1 caches, are small
and fast caches that are private to each core. Other cores cannot access
them directly but only via the coherency protocol. Most Intel and AMD
CPUs also have private, larger L2 caches.

Modern CPUs have a large (multiple MB) shared LLC. It facilitates the
use of code and data on multiple cores simultaneously and simplifies
coherency and cache lookups. Typically, on Intel and AMD CPUs, this
is the L3 cache, and on ARM CPUs, the L2 cache. The LLC is often
inclusive, i.e., all cache lines in L1 or L2 caches are also in the LLC. Some
CPUs split the LLCs into so-called slices [44], which are independent
caches, e.g., per (logical) core. The slice is selected based on the physical
address, not the core. Each core can access each slice via a ring bus that
connects all cores and slices.

139

7 SassCache: Scatter and Split Securely

2.2 Index Derivation Function

Conventional caches map addresses to cache sets by simply using a part
of the physical address as a set index, but more advanced functions can
be implemented as well [75]. Werner et al. [26] introduced the term Index
Derivation Function (IDF) for these mapping functions, which we will
use going forward. An IDF generates a set of possile cache lines for each
physical address. A more complex IDF can break the traditionally linear
relationship between addresses and sets, and may also change the static
sets into dynamic ones, such that sets are not fixed collections of cache lines
anymore. For this, a cryptographic function that works on the physical
address as well as some secret can be used. IDFs generally need to scale
well, incur low overheads, and be fully transparent to the software level.

2.3 Cache Attacks

As the cache state depends on recent memory accesses, an attacker can
learn interactions of other programs with memory (e.g., instruction and
data accesses). Initial attacks focused on the execution time [65, 68, 70,
72]. More recent techniques interact directly with the shared cache.

Flush+Reload [49] relies on (read-only) shared memory between attacker
and victim: It flushes an address and later determines whether a victim
accessed it by measuring its load latency. Prime+Probe [64] has no such
restriction. It measures contention on a portion of the cache (e.g., a cache
set) by filling this portion (prime) and measuring the time this takes
(probe). Victim accesses to congruent addresses evict the attacker’s lines,
influencing the probe time.

Contention-based attacks (e.g., Prime+Probe) on the LLC require profiling
to identify eviction sets, i.e., sets of congruent addresses. The attacker
starts with a large pool of lines and, by timing accesses, discards those
that do not contribute to contention [43]. The profiling duration depends
on knowledge of the mappings and the number of elements discarded
per iteration [25]. Prime+Probe based attacks are still actively being
improved [3, 4, 6, 9].

140

2 Background

2.4 Secure Caches

We can roughly categorize secure caches into designs based on partitioning
or randomization. Where partitioning designs reserve parts of the cache
per security domain, randomized cache architectures usually make the
entire cache accessible but obfuscate the mapping of addresses to cache
lines.

Randomization-based designs aim to make contention attacks statistically
hard by making the mapping of addresses to cache unpredictable and
unobservable. This hinders the construction of eviction sets and the
observability of targeted events (cf. Section 2.5).

Many of these designs require randomization mappings to be dynamic, i.e.,
renewed over time. This rekeying (or remapping) destroys any congruence
information an attacker may have learned. More frequent rekeying is more
secure but comes with a performance [29] and power penalty.

CEASER-S [22], ScatterCache [26] and PhantomCache [16] are
examples of skewed designs [74] that compute indices on the fly. Scatter
Cache computes indices to individual cache lines which together form
a unique set with random replacement. CEASER-S and PhantomCache
randomly select from computed indices to entire sets, which can then use
standard replacement policies like LRU. Since computations are done on-
the-fly, these designs are scalable and suited for large LLCs. However, they
have been shown to be susceptible to recent attacks [3, 9, 15].MIRAGE [5]
moves the randomization to the cache directory and uses it to approximate
a fully associative cache. So far, none of the randomization-based secure
caches protect against cache occupancy attacks.

Random Permutation (RP) Cache [63] precomputes permutation
tables per process. Newcache [61] proposes an entirely new cache design
with a secure table of indirection that tries to approach a directly-mapped
cache. These table-based designs require overhead proportional to their
size, which can be prohibitve for large LLCs.

Partitioning splits the cache into (fixed) slices by its sets (e.g., cache
coloring [38, 59]), or its ways (e.g., Intel Cache Allocation Technology
(CAT)). The security depends on the strength of the isolation between
domains and how much remains observable to attackers. However, static
partitioning reduces performance and lacks flexibility and scalability.

141

7 SassCache: Scatter and Split Securely

Non-Monopolizeable (Nomo) [55] cache reserves some ways per set to
be only writeable by one domain, but this leaves reserved ways observable.
Vantage [56] partitions most of the cache while maintaining associativity.
Partitions can outgrow their allocated size into a small, unpartitioned
space. Additional cache tag bits determine the number of partitions.
AutoLock [32] prevents cross-core evictions by locking cache lines on ARM
CPUs. Hybcache [19] uses a hybrid approach between a set-associative
and a fully-associative cache. Full associativity is realized only in a small
number of ways used for security-critical applications, whereas the rest
uses the cache set-associatively. This assumes secure and insecure domains,
which differs from the usecase for SassCache. Jigsaw [51] and Jumanji [14]
partition the cache dynamically by splitting it into shares. Software defines
capacity and mapping by assigning identifiers to the Page Table Entries
(PTEs). Jumanji has a lower latency, and higher performance and security
than Jigsaw.

He et al. [33] analyzed static partitioning, Nomo, NewCache, RP Cache,
and others, and found that all are, to some degree, vulnerable to at least
2 of 4 studied attacks.

In summary, later analyses [3, 9, 33] of randomized and partition-based
caches that provide probabilistic security have shown that these can
achieve relatively high performance, but are often not as secure as first
thought. Static and total partitioning, on the other hand, provides strong
security guarantees at the cost of flexibility and performance.

With SassCache, we combine these two strategies. We make security
guarantees for most addresses that are the same as a statically partitioned
cache (Section 7), with better performance for our target environment
(Section 8.4).

2.5 Attacking Secure Caches

Profiling secret-dependent cache lines and finding addresses congruent to
them, is an important prerequisite for successful exploitation. The first
proposals [29, 30] were bypassed by optimized eviction set algorithms [22,
25], allowing the exploitation phase to proceed as in traditional caches.
Consequently, they are practically broken since they require impractical
rekeying periods to maintain security [22].

142

3 Threat Model and Mitigation Goals

Randomized caches with a probabilistic component [16, 22, 26] preclude tra-
ditional eviction by design. Obtaining fully congruent addresses, mapped
to the same set in every partition, is theoretically infeasible. In particular,
the notion of eviction sets needs generalization (i.e., weakening) if the
attacker is to succeed at all. Werner et al. [26] propose eviction sets with
addresses congruent in at least one cache way, which was later generalized
to partitions [3].

While finding generalized eviction sets is more difficult, a resourceful
attacker can still find them by observing which lines are evicted by victim
execution. To maximize the chance of observing such evictions, Purnal et al.
[3, 21] propose Prime+Prune+Probe (PPP). It extends Prime+Probe with
a pruning step, enabling occupying a large portion of the cache before
transferring control to the victim. PPP was originally applied to CEASER-
S and ScatterCache and reduced the complexity of finding eviction sets
by orders of magnitude. However, it also applies to other randomized
caches, e.g., those that skew across sets instead of ways [16]. Song et al.
[6] propose to flush the attacker’s own lines to speed up PPP by avoiding
costly full cache evictions.

Given a rekeying period, the attacker needs to split resources between
profiling (i.e., gaining spatial information) and exploitation (i.e., the actual
attack). Bourgeat et al. [9] propose a methodology to navigate this tradeoff.

At one extreme, an attacker spends no time profiling and just measures
cache occupancy [24], i.e., cache utilization. While less accurate than
congruence-based channels (i.e., no spatial information), it is unaffected
by rekeying. Current secure LLC designs, even those approximating fully-
associative caches [5, 19], have the property that victim accesses are
reflected in the observable cache utilization, leaving the cache occupancy
channel unmitigated. Some designs are also vulnerable to so-called shortcut
attacks that exploit weaknesses in randomization to bypass the protection
altogether [3]. Thus, it is crucial that the randomization mapping uses
well-designed cryptographic primitives.

3 Threat Model and Mitigation Goals

In this section, we describe our threat model and mitigation goals for
secure caches, forming the basis of our secure cache design, SassCache.

143

7 SassCache: Scatter and Split Securely

As shown in Section 2.5, even modern secure caches are affected, e.g., by
Prime+Prune+Probe [3] or due to weak cryptographic constructions [3].

3.1 Threat Model

Our threat model is in line with prior work [3, 16, 26] but takes more recent
and advanced attack techniques into account (cf. Section 2.5). In this
threat model, SassCache constitutes the cache level that is shared between
attacker and victim. For our evaluation, we do not consider self-eviction
in the victim, because in randomized skewed caches, reliable self-eviction
only occurs with substantial amounts of memory accesses as part of the
secret-dependent operations or active victim participation.

SassCache uses a function that maps physical addresses to cache sets
by generating indices idxi, where i counts the ways. (Figure 7.1). We
assume the function is known to the attacker but uses a random secret
key and a security domain (SDID) to separate security contexts. The
key is inaccessible to the attacker, whereas the address is fully controlled.
Attacker and victim are separate tenants on a multi-tenant system, where
each has their own SDID. Consequently, they are located in different
security contexts, and the attacker only has control over few contexts (c.f.
Section 7.5). While the attacker may be able to read the SDID, it cannot
set it; only privileged software (e.g., the hypervisor) is allowed to set it.
The generated indices idxi are not observable directly but only via cache
contention. Physical attacks on the function, its intermediate values, or
secret parameters and bugs in the privileged software are out of scope.

3.2 Required Attributes

Functionally, a secure cache should be mostly transparent to software
but maintain performance that is comparable to standard caches. On the
security side, we extend the security attributes of ScatterCache [26] as
follows to address more recent attacks [3] and attacks commonly considered
out-of-scope (e.g., the cache occupancy channel [5, 16, 26]):

• Software-defined security domains (based on properties like virtual
machine (VM), tenant, user, or process ID) must not share cache lines
unless cross-domain coherency is explicitly required, e.g., writable shared
memory.

144

4 The SassCache Architecture

IDF

IGL

ISL

keySDID

i
n
d
e
x

t
a
g

o
f
f
s
e
t way 0

idx0

way 1

idx1

way 2

idx2

way 3

idx3addr

Figure 7.1: Our two-layer Index Derivation Function (IDF): The first Index
Generation Layer (IGL) is a cryptographically randomized mapping
of addresses to indices, like in ScatterCache; the second Index Spacing
Layer (ISL) reduces the set of reachable cache lines through another
cryptographically randomized mapping (cf. Section 5.1).

• It must be hard to find congruent addresses in the cache, i.e., it should
be hard for adversaries to infer a connection between accessed physical
addresses and cache set index.

• Partially accessible addresses should become hidden with a high proba-
bility to reduce their observability.

• It must be impossible to evict, measure or control all cache lines from
another security domain.

4 The SassCache Architecture

We present SassCache, a novel probabilistically-skewed secure cache that
achieves the desired security properties (cf. Section 3.2) and maintains a
backward-compatible interface.

Purnal et al. [3] show that randomized secure caches can still be attacked
both with old attacks and new attack variations, albeit at a lower attack
performance. The underlying problem is that the full cache is still accessible
to the attacker. On the other hand, approaches based on cache partitioning
such as cache coloring [38, 60] and Intel’s Cache Allocation Technology
(CAT) offer strict security by splitting the cache into fixed allocations
but lack flexibility and scalability. To overcome the drawbacks of previous
randomized and partitioned caches, we combine the two principles in Sass
Cache. Hence, to mitigate even statistical and occupancy attacks, the idea
for SassCache is to cryptographically limit the total number of cache lines
accessible to an attacker, in addition to the permutation performed by
ScatterCache. We refer to the number of accessible cache lines (=share of
the total cache) as coverage.

145

7 SassCache: Scatter and Split Securely

SassCache follows a two-layered approach for its IDF (Figure 7.1): First,
the Index Generation Layer (IGL) is a permutation of cache sets as in
ScatterCache. This breaks the link between cache set and physical address
across different security domains and makes it very hard to profile the
cache for an attack [3]. If this layer were a known, non-skewing mapping
(such as a bit mask on the physical address), the number of unique sets
would be limited. A small number of fixed sets not only makes profiling
trivial, it also makes self-eviction deterministic and more likely. This is
because some addresses would always share the same set, and therefore
compete for the same unobservable ways (Section 7.1). Additionally, with
potentially millions of profiling attempts per successful attack (Section 7)
and minutes per attempt [3], the IGL ensures high costs for attackers. In
short, the IGL provides important support for the security of the second
layer and defense-in-depth properties.

Second, the Index Spacing Layer (ISL) restricts accessible cache lines
similar to partitioning-based approaches. However, instead of statically
slicing the cache into fixed allocations, SassCache selects the accessible
cache lines pseudorandomly based on the cryptographic function we pro-
pose in Section 5. Therefore, overlaps between security domains become
probabilistic. Some cache lines are inaccessible to other security domains,
which makes eviction of these cache lines by an attacker impossible. The
second layer’s parametrizable construction determines the share of the
cache available per security domain. As outlined in Section 3, SassCache
is focused on a server setting with multiple security domains, identified
by a Security Domain Identifier (SDID). We target this environment in
particular because the security domains are well defined, and concurrent
use is typical. Each security domain is assigned to one tenant, with the
hypervisor running in its own security domain, i.e., all virtual machines of
one tenant run in one security domain. However, SassCache’s design would
also allow the definition of other security domains and use cases, such
as VMs, users, groups of processes (e.g., for container software), single
processes, or even address ranges (e.g., in-process isolation mechanisms).
Our generic approach leaves the choice for security domains to the most
privileged software (e.g., the hypervisor). Whatever the use case, one
domain should never be able to generate more domains under its control
to avoid collusion (c.f. Section 7.5). As multiple security domains, i.e.,
tenants, will use a CPU concurrently, each domain evicts fewer lines from
other domains, increasing fairness. Additionally, multiple users already
limit each other’s cache share, which further alleviates the reduction in
cache size per domain.

146

5 Cryptographic Design

We propose SassCache as an inclusive or non-inclusive last-level cache
(LLC). We opt for a set-associative base design with W ways, i.e., W
cache arrays, exactly like existing caches deployed in current CPUs. Each
cache array with a size S is indexed individually by one of the W indices.
Because the sets are dynamic, we use a random replacement policy. This
approach results in SW possible cache sets after the first layer, similar
to ScatterCache [26]. The second layer ISL restricts the possible indices
in each way. While this reduces the number of sets per domain, it brings
a novel security property: certain cache lines cannot be evicted by an
attacker. Our cryptographic design is the basis that makes it improbable
(cf. Section 7) for an attacker to evict a target cache line or measure cache
occupancy.

5 Cryptographic Design

For SassCache, we need a function to generate cache-set indices from
addresses to skew the cache, i.e., the Index Derivation Function (IDF).
Additionally, the IDF must limit the number of accessible cache lines per
security domain, i.e., the coverage. Hence, in this section, we introduce
the two-layered cryptographic primitive at the core of SassCache. We
design a low-latency IDF that maps the address to W indices idxi, where
the mapping is controlled by the SDID and the key (Figure 7.1). The
IDF consists of two layers: an Index Generation Layer (IGL) that maps
the address to W independent intermediate identifiers idi and an Index
Spacing Layer (ISL) that maps each identifier to the final index idxi in
the index space. This index idxi is selected uniformly from a subset of
the index space defined by the SDID, key, and way i. The ISL is designed
such that the subset is expected to cover a defined share of the full index
space that we refer to as coverage.

5.1 Design of the Index Derivation Function

We design both layers using keyed permutations, i.e., block ciphers or
tweakable block ciphers. For the first IGL layer, we profit from permu-
tations with larger block sizes, whereas the permutations for the second
ISL layer are smaller and faster. We refer to these as BC and TinyBC,
respectively.

147

7 SassCache: Scatter and Split Securely

addrSDID, key

BC BC

TinyBC TinyBC TinyBC

idx0 idx1 idxF

•

•

. . .

. . .

01 0 addr

id0 id1 · · ·

03 0 addr

· · · idF ×

00 0 id0

× idx0

10 0 id1

× idx1

F0 0 idF

× idxF

. . .

63. . .56 55 . . . aa–1 . . . 0

63 . . . 53 52 . . . 4241 . . . 0

63. . .56 55 . . . aa–1 . . . 0

63 . . . 2726 . . . 16 15 . . . 0

63. . .5655 . . . 1110 . . . 0

63 . . . 1110 . . . 0

63. . .5655 . . . 1110 . . . 0

63 . . . 1110 . . . 0

63. . .5655 . . . 1110 . . . 0

63 . . . 1110 . . . 0

Figure 7.2: The address-to-index mapping function IDF with 63% coverage, for
W = 16 ways and 11-bit indices (ℓ = n = 11). The top layer is the
IGL, the bottom ISL.

Assuming the IDF maps a-bit addresses (e.g., a = 48) to n-bit indices
idxi (e.g., n = 11), we use intermediate identifiers idi of ℓ = n+ t bits (t
controls the coverage).

Index Generation Layer. For the identifiers idi, the IGL uses BC in
a counter-based streaming mode with SDID, key as key, and the address
addr as nonce to produce W · ℓ bits of keystream. Figure 7.2 (top half)
illustrates this construction for ℓ = n = 11, i.e., t = 0. For example, if
BC is a 64-bit block cipher, the IGL performs ⌈(W · ℓ)/64⌉ = 3 parallel
calls to BC with inputs c ∥ 0 ∥ addr, where c ∈ {0x01, 0x02, 0x03} is the
8-bit counter. We start counting at 01 for domain separation with the
second layer to support the choice BC = TinyBC. The outputs of BC are cut
into ℓ-bit chunks idi. These identifiers are expected to be uniformly and
(practically2) independently distributed in {0, 1}ℓ. They are unpredictable,
not controllable, and not directly observable for an attacker; learning them
still does not allow recovering information about the key. If two addresses
are mapped to the same identifier idi, they are mapped to the same index
idxi; the reverse is not true.

Index Spacing Layer. To generate the final indices idxi from idi, the
ISL uses W parallel TinyBC invocations. Prepending the counter i before
idi in the input and truncating the output of TinyBC effectively gives us

2There is a tiny bias due to the bijectivity of BC, which is not detectable in < 232 calls
with constant SDID/key due to the birthday paradox.

148

5 Cryptographic Design

a family of ℓ-bit to n-bit pseudorandom functions, keyed with SDID, key.
For TinyBC, a cipher smaller than BC also suffices, with a block size of at
least max(n+ ε, ℓ+ log2W) bits for some small integer ε.

Coverage. When considering such a random (non-injective) function f
with domain {0, 1}ℓ and co-domain {0, 1}n, we can derive the expected
coverage of the co-domain, i.e., E[#{f(x) | x ∈ {0, 1}ℓ}/2n], as follows.
Randomly choosing f means randomly choosing each value f(x) uniformly
and independently. Then, the expected coverage is the same as the proba-
bility for any specific y to appear among the values f(x) for any x ∈ {0, 1}ℓ.
In other words, the coverage equals the probability of drawing a single
golden ball from an urn containing 2n balls at least once when drawing
2ℓ = 2n+t times with replacement. Thus, the expected coverage C is

C = 1−
(
1− 1

2n

)2n+t

= 1−
((

1− 1
2n

)2n︸ ︷︷ ︸
→e−1 for 2n→∞

)2t ≈ 1− e−2t .

We list the resulting coverage C for t ∈ {−3,−2, . . . , 2} in Figure 7.3.
These values depend primarily on t and are essentially identical for all
relevant values of n, e.g., n = 11.

If TinyBC is only slightly larger than max(n, ℓ+log2W) bits, this truncated
construction can be modeled more precisely by taking into account the
bijectivity of the block cipher. With b > max(n, ℓ + log2W), the block
size of TinyBC (i.e., 2b−n inputs produce the same truncated n-bit output
idxi), the expected coverage Cb is the ratio of permutations mapping
i ∥ 0 ∥ idi to idxi for any idi among all b-bit permutations:

Cb = 1−
(
2b−2b−n

2ℓ

)
· 2ℓ! · (2b − 2ℓ)!

2b!
= 1−

∏2b−n−1
i=0 (2b–2ℓ–i)∏2b−n−1
i=0 (2b − i)

= 1−∏2b−n−1
i=0

(
1− 2ℓ

2b−i

)
≈ 1−

(
1− 1

2b−n−t

)2b−n

.

For example, for n = 11 and a b = 16-bit block cipher TinyBC, the resulting
expected coverage Cb differs by up to 0.9% from the result C for large
block ciphers. For clarity, we take the expected value of C as a given for
the security analysis, which is appropriate as its variance is very low.

5.2 Instantiation with QARMA and QARTA

We want to instantiate this design with efficient cryptographic functions
BC and TinyBC. Several low-latency block ciphers [10, 53] and tweakable

149

7 SassCache: Scatter and Split Securely

block ciphers (TBCs) [31, 36] have been published, though some provide
insufficient security [28], which share several design ideas with PRINCE [53].
We propose an instantiation using (parts of) QARMA [31], a TBC used for
ARM pointer authentication.

Conservative instantiation. A conservative instantiation is to use the
64-bit variant of QARMA, QARMA7-64, for both BC and TinyBC. This TBC
encrypts 64-bit plaintext blocks with a 128-bit key K and 64-bit tweak
T , fitting with the dimensions given in Figure 7.2. The 192-bit combined
tweakey (K,T) is available for key material from the SDID and key, fitting,
e.g., a 128-bit key as K and 64-bit SDID as T , or the XOR of two 128-bit
values as K with T = 0. The same key can be used for BC and TinyBC.
The expected coverage C for this construction can be derived with the
model for large block ciphers.

Low-latency instantiation. To avoid the latency of two calls to the
full TBC, we propose an optimized variant with a latency comparable to
one QARMA7-64 call: We instantiate BC with the round-reduced QARMA5-64

(with 12 instead of 16 rounds) and use operations from the remaining
4 rounds to run 4 ultra-light 16-bit QARTA4-16 ciphers in parallel. The
total circuit size of the IDF with fully unrolled BC and TinyBC instances
corresponds roughly to 4 QARMA7-64 instances. The expected coverage Cb

of this instantiation can be derived with the model for small block ciphers.

QARTA4-16 operates on one 16-bit column of a QARMA state and key using
the QARMA 4-bit S-box layer S (SubCells), mixing layer M (MixColumns),
and round tweakey addition (AddRoundTweakey), without applying an
equivalent of the permutation layer τ (ShuffleCells). Four parallel in-
stances of one QARTA4-16 round correspond to one round of QARMA without
the τ operation (cf. Figure 7.4). The key (w0, k0) and tweak T are again
derived from the SDID and key. In this instantiation, the key material for
TinyBC should be independent of that of BC. Figure 7.5 shows which parts
of the key material influence which index computations. Notice that the
tweak schedule implies that the tweak material influences several columns,
and acts differently on each tweak column. The QARMA round constants ci
are also different for each column.

QARTA4-16 is not a generically secure tweakable block cipher due to its
small size and low-latency design. It is tailored for the proposed application,
where an attacker has little control and never learns the cipher inputs
except for a few index and padding bits. Since each column depends on
at least 8 cells of the tweak T (Figure 7.5), the effective tweakey size

150

5 Cryptographic Design

−5 −4 −3 −2 −1 0 1 2
0

0.5

1

3% 6% 12% 22%
39%

63%
86% 98%

C
ov
er
ag

e
C

Figure 7.3: Expected coverage C ≈ 1− e−2t for t ∈ {−5, . . . , 2}.

P

T

C

h ω h ω h ω h ω

τ M S τ M S τ M S τ M S

k0

c0
k0

c1
k0

c2
k0

c3
k0

c4
w0 w0

Figure 7.4: Four parallel invocations of QARTA4-16 (with different, but partially
related keys).

for QARTA4-16 is at least 64 bits. Regarding its cryptanalytic properties,
QARTA4-16 is expected to reach its full algebraic degree after 3 rounds since
its S-box has an algebraic degree of 3 and 33 > 15. The MixColumns matrix
has a branch number of B = 4; there are several truncated differential and
linear patterns with a total of 8 active S-boxes that are compatible with the
input format, e.g., the iterative pattern (0, 0, ∗, ∗), where ∗ denotes active
cells. Since the maximum differential probability and absolute linear bias
of the S-box are 2−2, the maximum achievable probability for differential
characteristics is 2−16. Even with potential clustering effects, this is hard to
exploit for largely unknown cipher inputs. Still, an attacker that observes
a large number of cipher outputs might succeed in recovering a few key
bits by exploiting the few known cipher input bits and the partially
overlapping key material between indices. However, since the key material
is independent of the key used in BC, there is little information to derive
from this potential knowledge beyond the image set of TinyBC, which is
easily obtained through direct observation rather than cryptanalysis. The
main criterion for security is, however, the statistical behavior, which we
analyze next.

Coverage evaluation. Figure 7.6 shows the observed distribution of the
coverage for both instantiations of TinyBC for 100 random keys with 16
counter values i each. Both QARMA7-64 and QARTA4-16 behave as expected,
with average coverages C and Cb (b = 16), respectively. For example, for
t = −1, the coverage for QARMA7-64 ranges from 37% to 41%, with an

151

7 SassCache: Scatter and Split Securely

0
i
d
0

1
i
d
1

2
i
d
2

3
i
d
3 · · ·

C
i
d
C

D
i
d
D

E
i
d
E

F
i
d
F

P T w0 k0

Figure 7.5: Mapping of QARMA-64 and QARTA-16 states.

21% 22% 23%

QARTA4-16
QARMA7-64

CbC

t = −2

38% 39% 40% 41%

QARTA4-16
QARMA7-64

CbC

t = −1

61% 62% 63% 64% 65% 66%

QARTA4-16
QARMA7-64

CbC

t = 0

84% 85% 86% 87% 88% 89% 90%

QARTA4-16
QARMA7-64

CbC

t = 1

Figure 7.6: Experimental coverage for t ∈ {−2, . . . , 1} for 100 random keys and
16 ways i, with QARMA or QARTA4-16, and expected values C and Cb,
respectively.

average of C ≈ 39%. The coverage for QARTA4-16 ranges from 37% to
41%, with an average close to Cb ≈ 39%.

6 Implementation of SassCache

SassCache is designed as a last-level cache (LLC) for a server environment
with multiple co-located security domains. The use in an LLC enables
hiding the latency of the cryptographic functions during lower-level cache
lookups. Especially in servers (and desktops), we believe the added energy
consumption of the lightweight cryptography will be negligible compared
to regular cache and memory lookups.

6.1 Hardware Modification

While recent advances in the RISC-V community lead to the first RISC-V
CPUs with experimental L2 caches [17, 27], they are far from state-of-
the-art high-performance L3 LLCs used in server-grade CPUs and thus
not yet suited for estimations on the hardware modification costs that

152

6 Implementation of SassCache

Intel, AMD or ARM would see. Hence, we estimate SassCache’s hardware
costs by determining the hardware costs for the building blocks in terms
of chip-area and latency.

Area. The cryptographic primitives for the IDF make up the main cost
in hardware. We propose QARTA4-16, a custom low latency instantiation
for 16 ways (cf. Section 5.2) corresponding to roughly four QARMA7-64

instances with 34.4kGE each [31]. Therefore, in total, the IDF requires less
than 140kGE. Previous work [26] estimated that the open-source BROOM
core’s LLC takes up about 5.5MGE. Hence, our design should result in
less than 3% of that.

The additional area required to skew the cache is specific to the overall de-
sign. In general, Djordjalian [69] noted that additional decoders and wiring
are required for each way. For a 2-way skewed cache, Spjuth et al. [66] saw
a 17% increase in energy consumption. However, Sardashti et al. [48] show
that cache skewing only has 1.5% to 15.3% overhead. Furthermore, most
Intel cache architectures already feature cache slices; thus, they partition
the cache into smaller caches with multiple addressing circuits already.

Latency. SassCache’s latency depends on the IDF’s latency for generat-
ing the set indices. We use QARMA, which is already used for latency-critical
applications like pointer authentication [35] or memory tagging [12]. No-
tably, QARMA achieves a latency as low as 2.20 ns when fully unrolled at a
7 nm process [31]. For our low-latency instantiation (cf. Section 5.2), the
combined latency of QARMA5-64 and QARTA4-16, used for IGL and ISL, is
comparable to that of QARMA7-64 at about 3.25 ns. In comparison, this is
still lower than L2 cache access on current CPUs (e.g., Intel Xeon 8280
at 5.18 ns [18], AMD Epyc 7742 [18] at 3.86 ns, and ARM Ampere Altra
Q80-33 at 4.11 ns [11]). Since SassCache is designed for shared LLCs, most
if not all of the latency is hidden in lower-level cache lookups, and our IDF
becomes viable for practical implementation. In line with other skewed
cache designs, the skewing itself does not introduce additional latency [5,
29].

6.2 SassCache Interactions

One goal of SassCache is to make its adoption as frictionless as possible
by providing strong security benefits even without software support.

153

7 SassCache: Scatter and Split Securely

Backward Compatibility. To make SassCache backward compatible,
we suggest to initially deactivate the spacing layer of the IDF. While
booting, privileged software (e.g., the hypervisor) aware of SassCache and
security domains activates the second layer via a configuration register.
Thus, legacy software still benefits from a cache similar in functionality to
ScatterCache without security domains, which already protects against
some cache attacks [26].

SassCache Software Interface. The software must supply the correct
SDID to SassCache. Depending on the architecture and what constitutes
a security domain (we focus on the cloud use case), this can be achieved
in numerous ways. On x86-64, ARM, or RISC-V systems, we can use
unused bits in the PTEs to supply the SDID either directly or indirectly
via an additional lookup table. Using the SDID directly only allows for a
limited number of security domains, which we therefore do not recommend.
Intel x86-64 has 14 bits [20], ARM64 4 bits [50], and RISC-V 10 bits [23]
reserved for future use in the PTEs that can be used for this.

However, by using the PTE bits as a lookup, very large SDIDs are possible,
such that there will never be domain collisions. To do so, an additional
SDID list is implemented in hardware. The list is only writeable by
privileged software (e.g., hypervisor or OS) and has a number of slots
corresponding to the available bits in the PTE. This allows privileged
software to load specific sets of SDIDs for a security domain during context
switches. During a memory access the Memory Management Unit (MMU)
then uses the bits from the PTE to look-up the SDID in parallel and
forward it to the cache alongside the memory request.

This indirection allows for privileged software to easily change a large
number of SDIDs on demand. Moreover, if the number of SDID indices
loaded in parallel is insufficient for an application, one specific index can be
used to trigger an exception, albeit with a performance hit. The exception
then allows privileged software to examine the situation and switch certain
SDIDs, before returning to the application. The size of the list limits the
number of security domains available in parallel. The overall number is
only limited by the size of the SDID and the input-size of the IDF.

Alternatively, Intel’s Page Attribute Table (PAT) and ARM’s Memory
Attribute Indirection Register (MAIR) offer similar functionality for this
purpose, i.e., define memory types and specify caching behavior. The
available bits in the PTE index list can be used to implement the SDIDs.

154

6 Implementation of SassCache

Implementation Considerations. Addressing the SDID indirectly
allows for effective tenant-based separation with only a single bit and two
domain registers holding the full SDID. This enables using two security
domains simultaneously, e.g., privileged software (e.g., the hypervisor) and
application (e.g., the tenant’s VM). Thus, it enables coarse separation
of execution paths that require context switches, during which the con-
figuration registers are maintained, and certain types of shared memory.
During context switches, the privileged software swaps the SDID for the
application. To preserve separation in the cache, different SDIDs are used
for shared memory. Hence, read-only shared memory (e.g., libraries) is
shared across security domains with different SDIDs without further mod-
ifications. However, shared memory used in different security domains is
loaded to different locations in the cache for each domain.

For writable shared memory, a change in the SDID also changes which
cache lines are part of the cache set. This can lead to cache coherency
issues for writeable shared memory. Therefore, for this memory type,
the privileged software must assure that the SDID is the same across all
security domains that can access the shared memory. With the single-
bit approach, the SDID for privileged software can be reused for shared
memory. Similarly, to copy data between privilege levels (e.g., hypervisor
and VM), the correct SDID must be loaded. Multiple VMs of one tenant
are in the same security domain to prevent collusion using multiple SDIDs.

6.3 Key Management and Rekeying

Both the IGL and ISL require a secret key to make cache indices unpre-
dictable. Thus, an attacker cannot map addresses to indices or vice-versa,
even if SDID, IGL, and ISL are publicly known. However, this makes it
essential to prevent software from extracting the secret key used by Sass
Cache.

SassCache uses a boot-time hardware-generated key, like CEASER-S [29]
and ScatterCache [26]. The key is stored in a hidden CPU register and
is inaccessible to software. This prevents an attacker from predicting
the resulting cache set from a physical address and vice-versa. Only the
SDID may be set by the software to provide different security contexts.
This keeps the required software and hardware changes low and modular,
decreasing the effort to implement SassCache.

155

7 SassCache: Scatter and Split Securely

CEASER-S and ScatterCache require rekeying [26, 29]. The frequency of
rekeying is a security parameter to adapt to improved attacks and security
margins [3]. Key changes work well on write-through caches as no data
inconsistencies can occur. However, rekeying costs performance as data is
invalidated, causing cache misses. Thus, changing the key corresponds to a
cache flush in terms of performance. Implementing rekeying for write-back
caches is more costly: The key must not change before all dirty cache lines
were written to memory.

While SassCache could support rekeying for both write-through and write-
back caches, we do not recommend it. SassCache’s main security gain
over previous designs derives from the Index Spacing Layer (ISL). With
rekeying, each epoch will have a certain chance that a given address is fully
reachable by an attacker. If the user decides that this chance is too high,
and the additional security provided by the Index Generation Layer (IGL)
is too low, the rekeying period then necessarily depends only on the IGL,
which renders the ISL superfluous. This is because under the assumption
that a victim address is attackable, the rekeying period will now have to
be determined only by how long it takes to succesfully attack the IGL,
i.e., ScatterCache.

Instead, we suggest choosing the coverage parameter t such that the
remaining risk is acceptable.

7 Security Evaluation

In this section, we evaluate the security of SassCache against state-of-the-
art attacks. The security is based on two steps:

1. For t=−1, W=16 SassCache prevents full eviction of the target cache
line in 99.999 97% of cases (cf. Section 7.1). Thus, on average, the
attacker can try to construct an eviction set for 1 in 3 000 000 cache
lines, or 64B in 185MB of memory. On CPUs with 20 ways per cache
set, this increases 1 in 125 000 000 cache lines, or 64B in 7.6GB of
memory.

2. For attackable cache lines, security reduces to that of ScatterCache,
with attack times from prior work [3].

Like previous designs [5, 26], SassCache precludes attack techniques based
on shared read-only memory (e.g., Flush+Reload) by placing them sep-
arately in the cache per security domain. Thus, we evaluate SassCache

156

7 Security Evaluation

0 2 4 6 8 10 12 14 16
0

0.1

0.2 Fully
A
ccessible

Number of ways accessible

P
ro
b
a
b
il
it
y

C = 22% C = 39% C = 63%

Figure 7.7: Accessibility distribution of cache lines (W = 16) for different cache
coverages C. Fully accessible lines are observable to an attacker; all
others become unobservable.

against the remaining attack classes, i.e., contention- and occupancy-based
attacks.

7.1 Properties of SassCache

Partially Accessible Lines. In the worst case, a victim line falls within
the attacker’s coverage in each of the W ways. The probability PW = CW

is low for practical configurations (e.g., PW = 0.06% in a 16-way Sass
Cache with C = 63% or PW = 0.000 033% with C = 39%). For such fully
accessible lines, the security of SassCache is equivalent to that of Scatter
Cache with the same security domain size (i.e., W ways, C · S sets). All
other lines are partially accessible, i.e., they can hide in the victim region,
where they are not observable nor controllable by the attacker. Figure 7.7
highlights the abundance of partially accessible lines in the distribution.
The exponential dependence of PW on the number of indices W motivates
SassCache to build on ScatterCache instead of other skewed designs.

For victim programs where M lines encode the same information (e.g.,
AES T-Tables, M=16), the probability that at least one of them is fully
accessible is PM = 1− (1− CW)M . Figure 7.8 illustrates PM for a 16-way
cache.

Repeated Observations. Cache attacks typically require many ob-
servations of sensitive lines, both for contention-based attacks [3, 13,
25, 43] and for cache occupancy attacks [24, 45]. In SassCache, ac-
cesses to victim lines are only observable to the attacker when they
evict an attacker’s line. The probability for a partially accessible vic-
tim line to be observable N times before being hidden is P [N]

(1−CW)
, where

157

7 SassCache: Scatter and Split Securely

100 101 102 103 104 105 106 107
0

0.2

0.4

0.6

0.8

1

0.0
00

3%
RS

A,
39

%

0.0
00

5%
AE

S,
39

%

Cache lines used by victim (M)

O
b
se
rv
a
b
il
it
y

p
ro
b
a
b
il
it
y

C = 39% C = 63%

Figure 7.8: Observability probability (W = 16, C = 39% & C = 63%), increases
with cache lines. A covert channel requires thousands of cache lines.
The probability of a successful occupancy-based attack is extremely
low. Example points are openSSL AES T-Tables and mbedTLS RSA-
4096.

0 1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8

P
ro
b
ab

il
it
y

C = 22% C = 39% C = 63%

Figure 7.9: Probability to observe partially accessible victim line N times before
it is hidden (W = 16).

P [N] =
∑W−1

i=0 [(i
W)N · W−i

W ·
(

i
W

)
·Ci · (1−C)(W−i)] (cf. Figure 7.9). The

expected number of observable victim accesses until the line is hidden
can be computed as E[N] =

∑∞
n=0 n · P [N = n]. In a 16-way SassCache

with C = 39%, this is already after E[N] ≈ 0.72 accesses on average, for
C = 63% after E[N] ≈ 2 accesses. This reflects the number of potentially
observable victim accesses to the cache line, i.e., assuming that the attacker
occupies its full share of the cache (C · S ·W lines).

Summarized, the vast majority of lines are not fully accessible
by the attacker, and partially accessible lines rapidly become
unobservable. Section 7.2 examines the security of SassCache against
contention-based attacks, evaluating state-of-the-art profiling and exploita-
tion success rates. Section 7.3 evaluates SassCache for cache occupancy
leakage, an attack vector largely unmitigated by prior designs.

158

7 Security Evaluation

7.2 State-of-the-Art Attack Evaluation

We implement SassCache in CacheFX [1], which models attack strategies
on real systems with attacker and victim code, which the framework invokes
accordingly. Attacker and victim issue requests to cache implementations
that respond with hits and misses. The framework analyzes attack success
statistically and offers several knobs to test caches configured with different
parameters, e.g., number of sets, ways, and replacement policy. With the
framework we test the applicability of state-of-the-art profiling (Single
Holdout Method [29], Group Elimination Method [22], and Prime+Prune+
Probe [3]) on SassCache, to find partially congruent addresses, i.e., lines
congruent with the target in one or more ways. We configure SassCache
with 16 ways, and t = −1 (i.e., C = 39%) and test each profiling algorithm
500 times. We sample a random victim address, let the algorithm find
an eviction set, and test the quality of the found set by (a) determining
the share of truly conflicting addresses (True Positive Rate (TPR)) in
the eviction set, and (b) computing the success rate (SR) of evicting the
victim address. We compute the minimum, maximum, mean, and median
for TPR and SR over all runs to statistically analyze profiling on Sass
Cache.

We observe that all techniques fail with overwhelming probability, as
expected (cf. Section 7.1). Our analysis of the algorithms’ progress shows
that after a few victim evictions, the victim address is not observable to
the attacker anymore and hidden in the cache, as expected (cf. Figure 7.9).
Hence, both the minimum and median of TPR and SR are 0. Maximum
TPR and SR vary depending on the algorithm, the eviction set size, and
the concrete cache parameters, but occur infrequently when the victim
address is fully attacker-reachable (and SassCache falls back to Scatter
Cache). For instance, the most efficient technique Prime+Prune+Probe
achieves a maximum TPR of 1 and a SR according to Figure 5 in [26]. Mean
TPR and SR are skewed according to the maximum and the probability
of fully accessible lines.

Note that our empirical analysis considers a single target victim line.
Figure 7.8 covers the probability for profiling to succeed on at least one
out of M redundant lines, which is low for real-world attack targets.
Advanced profiling methods [3] enlarge eviction sets (of sufficient size)
without relying on further victim accesses. This does not affect SassCache,
as the address is mostly not reachable in the first place. Furthermore, once

159

7 SassCache: Scatter and Split Securely

a line is hidden, the attacker cannot proceed without self-eviction by the
victim (cf. Section 3).

7.3 Cache Occupancy Leakage

The cache occupancy channel is arguably the most primitive cache side-
channel. When the number of cache lines a victim uses depends on a secret
bit, an attacker can recover the bit by simply measuring cache utilization.
Traditional shared caches as well as secure randomized caches [5, 22,
26, 29] cannot completely close the cache occupancy channel. This can
easily be seen when looking at a fully-associative cache: While there is
no cache-set information to gain, the occupancy of a different number of
cache lines can still be observed. SassCache improves over previous secure
randomized caches, as only part of the cache occupancy of the victim is
visible to the attacker. As the cache occupancy channel covers a significant
amount of irrelevant cache lines, all cache occupancy attacks so far [24,
45] require a large number of repetitions. Unless the victim’s cache line is
fully coverable by the attacker, it will quickly be hidden in an attacker-
unreachable part of the cache (cf. Section 7.1). Furthermore, self-eviction of
a specific cache line is generally unreliable and unlikely (cf. Section 3). If a
victim occupies large amounts of memory, self-eviction can occur, but with
adverse effects as it reduces the overall number of cache lines occupied by
the victim as compared to the non-self-eviction case, reducing exposure to
the attacker. This is particularly relevant for the covert channel case where
the attacker occupies a large fraction of the cache. To obtain worst-case
numbers, we assume that in this case the attacker is completely lucky and
there is no self-eviction that conceals some of the fully coverable visible
cache lines. Consequently, the formula from Section 7.1 also applies to
the cache occupancy channel: The probability that a cache occupancy
channel encoding ‘0’ and ‘1’ into M cache lines works successfully is the
probability that at least one of these cache lines is fully coverable (cf. PM

in Section 7.1).

With the default configuration of 39% coverage, for very low values,
the success probability for the occupancy channel is close to 0% (cf.
Figure 7.8). If the difference between a secret bit ‘0’ and a secret bit
‘1’ is reflected in the access to more than two million cache lines, the
probability that the attacker can observe the occupancy channel is 50%.
For an observability probability of 95%, more than 10 million cache
lines must encode a ‘1’. This number of cache lines is far beyond normal

160

7 Security Evaluation

cache attack targets: OpenSSL AES T-Table encryption encodes key-bit
information in 16 cache lines resulting in an observability probability
below 0.000 5%. mbedTLS RSA-4096 signature computation encodes
equivalent key-bit information in up to 9 cache lines [13], resulting in an
observability probability below 0.000 3%. Hence, SassCache also closes
the cache occupancy channel in many attack scenarios.

7.4 Asymmetric Domain Sizes

A convenient feature of SassCache is that its parameters can be configured
for each system. By adjusting the coverage parameter t of the Index
Derivation Function (IDF) (cf. Section 5), we can fine-tune the security
and performance tradeoff. We will see in Section 8.4 that this tradeoff is
not necessarily bad for systems that are shared by many users. Domain
sizes can cover 12% to 98% of the available cache. While smaller coverage
increases the security, it reduces the application’s performance due to the
reduced cache size.

Maybe counterintuitively, restricting security-critical domains more does
not increase their security. Since attackers only need to find congruent
addresses to the victim’s in their own address space, the only domain size
that matters is the attacker’s. As it is generally unkown which parties on
a system will be attackers, the largest domain size should be chosen based
on the security requirement for all domains. Lower priority applications
can use reduced domain sizes.

7.5 Multi-Domain Attacks and the Choice of t

Ristenpart et al. [58] showed that achieving co-location in the cloud is
possible. Inci et al. [39] also showed that, while rare, co-location of more
than 1 VM on the same system is possible. Fang et al. [2] also show
container scheduling (e.g., Kubernetes) is vulnerable to co-location.

If attackers can occupy multiple security domains on the same system, they
may collude to mount a stronger attack on a victim VM. When we combine
the coverage of multiple domains, the expected total coverage changes
with the attacker-controlled domains nd according to Ct = 1− (1− C)nd

(cf. Section 5.1). Doubling the amount of domains nd effectively reduces
the security equal to an increase of the parameter t by 1. For example,
two colluding attackers with C = 39% could, at best, mount an attack as

161

7 SassCache: Scatter and Split Securely

if the coverage C were 63%. In practice, cloud providers need to select
an appropriate base coverage for security (e.g., t = −1), and then adjust
down with the above formula based on their expectation of co-location
probability.

7.6 Trusted Execution Environments

The threat model of Intel SGX [37] and AMD SEV-SNP [7] explicitly
allows malicious privileged software and hypervisors. Without further
modification for these TEEs, this goes beyond our threat model because
it contradicts our goal of backwards compatibility. If the ISL is disabled,
SassCache falls back to the security of a secure randomized cache.

8 Performance Evaluation

In this section, we analyze SassCache’s performance in a default configu-
ration with 39% coverage (unless stated otherwise). We use gem5 to run
MiBench [71], lmbench [73], scimark2 [67], and the GAP benchmark [41],
in line with previous works [22, 26, 29] to show the skewed cache char-
acteristics of SassCache. With our custom simulator we run extensive
workloads (e.g., SPEC CPU 2017) efficiently and evaluate the cache’s
behavior based on real-world recorded memory access traces, e.g., for a
multi-tenant cloud scenario. We show that SassCache performs similar
to traditional set-associative caches of the same size, and can increase in
relative performance as multiple tenants compete for the cache. All caches
are evaluated without rekeying, as this would be highly implementation
dependant.

8.1 gem5 Test Setup

To evaluate SassCache in the gem5 full system simulator, we run gem5 as a
32-bit ARM DerivO3 3GHz CPU. We configure a two-level cache system.
The L1 is made up of 2 32 kB, 8-way caches for instructions and data.
As this is the same for all configurations, the differences in performance
stem from the respective L2 implementations only. All L2 caches are
configured with 1MB and 16 ways. The L1 and L2 cache line size is 64B.
This is similar to typical server and desktop configurations today with

162

8 Performance Evaluation

bc
kr
on

bc
ur
an
d

bf
s
kr
on

bf
s
ur
an
d

cc
kr
on

cc
ur
an
d

pr
kr
on

pr
ur
an
d

ss
sp
kr
on

ss
sp
ur
an
d

tc
kr
on

tc
ur
an
d

m
ea
n

−20

−10

−5

0

5
H
it
R
a
te

∆
[%

]
(h
ig
h
er

is
b
et
te
r)

LRU BIP Scatter Skewed Skewed50 Sass

Figure 7.10: gem5 cache hit rate in the GAP benchmark. Comparison against
Rand as a baseline.

slices functioning as independent caches (i.e., 1MB per cache slice and
64B cache line size), since when all cores on a system are in use, the
average per-core share of the LLC amounts to the size of 1 slice. We test
6 cache designs: (1) Bimodal Insertion Policy (BIP), (2) Least Recently
Used (LRU), and (3) random replacement (Rand), for regular caches; (4)
ScatterCache (hash-based), (5) skewed associative caches, and (6) Sass
Cache, for skewed caches. For SassCache, we evaluate the default security
level with the coverage parameter t = −1, i.e., a single-tenant coverage
C ≈ 39%. We also include Skewed50, a skewed cache at 50% capacity,
as this is the nearest size to 39% SassCache for a standard configuration
without changing W .

We deploy the same software setup as prior work [26], with poky Linux
(19.0.2) in Yocto 2.5 (“sumo”) and Linux 4.14.67 patched for compatibility
with gem5. For the evaluation, we use the cache statistics from the gem5
simulator. We configure the QUARTA instances for our IDF with the exact
distribution and latency properties described in Section 6.

8.2 gem5 Results

In our evaluation in gem5, the benchmark is the only workload on the
system, i.e., the only active tenant (one security domain). Therefore, cache
hit rates and performance of SassCache suffer from the smaller cache size
of each domain, as only ∼39% of the cache are used by the single tenant.
We evaluate concurrent security domains in Section 8.3. We measure only
the L2 hit rate, as the L1 does not change.

163

7 SassCache: Scatter and Split Securely

composite fft sor monte
carlo

sparse
mat-
mult

lu
0

200

400

600

2
8
0
.4

6
0

4
6
4
.9 5
4
5
.7

1
7
2
.1

1
5
9
.12
7
9
.3

5
9
.8

4
6
5
.2 5
4
5
.7

1
7
1
.2

1
5
4
.72
7
1

5
5
.2

4
3
1
.9 5
4
5
.7

1
7
1
.2

1
5
0
.8

2
9
9
.8

9
3
.1

5
0
2
.6

5
4
5
.7

1
8
4
.4

1
7
3
.12

9
9
.2

9
2
.1

5
0
0
.9

5
4
5
.7

1
8
4
.3

1
7
2
.92
8
5

8
5
.5

4
7
1
.3 5
4
5
.7

1
6
8
.8

1
5
3
.5

2
9
7
.1

8
9
.2

5
0
2
.9

5
4
5
.7

1
8
2
.3

1
6
5
.2S
co
re

(h
ig
h
er

is
b
et
te
r)

BIP LRU Rand Scatter Skewed Sass Skewed50

Figure 7.11: Result score for the scimark2 benchmarks for the gem5 simulator
with different L2 replacement policies.

Total iTB
walker

dTB
walker

Inst Data
0

50

100

2
2
.5

9
1
.3 9
9
.3

6
1
.7

6
.3

2
2

8
8
.9 9
9
.3

6
9
.2

5
.6

2
2
.8

8
9
.4 9
9
.1

6
7
.7

6
.7

3
1
.2

9
0
.2 9
8
.9

6
8
.4

1
7

3
1
.2

9
0
.1 9
8
.9

6
8
.4

1
72
7
.2

8
5
.8 9
8

6
2

1
2
.32
8

8
6
.6 9
8
.4

6
2
.9

1
3
.3

H
it
R
at
e
[%

]
(h
ig
h
er

is
b
et
te
r)

BIP LRU Rand Scatter Skewed Sass Skewed50

Figure 7.12: Cache hit rate by origin of cache requests for the scimark2 benchmark
in gem5 for different caches.

The GAP benchmark consists of 6 workloads (bc, bfs, cc, pr, sssp, tc)
with 2 input graphs, kron (-g27 -k16) and urand (-u27 -k16). Rand is
the baseline for the hit rate (cf. Figure 7.10). As expected, SassCache’s
smaller effective cache size lowers the hit rate on average by 11.6 p.p.
(6.1 p.p. to 20 p.p.). On average, SassCache’s hit rate is 11.5 p.p. lower
than ScatterCache. For GAP, (the best performing) LRU has an average
14.1 p.p. higher hit rate than SassCache. Skewed50 approximates Sass
Cache’s effective size and closely follows its hit rate, which supports that
the delta stems mostly from the smaller effective size.

To evaluate the impact of the smaller effective cache size, we use sci-
mark2 [67] in the -large 1 configuration. The cache hit rate (Figure 7.12)
shows that SassCache performs similar to other skewed caches for the
total hit rate and data accesses. All skewed caches show a notably higher
hit rate for the fft and composite benchmark than the non-skewed BIP,
LRU, and Rand policies. Consequently, for scimark2, skewed caches like
SassCache outperform the non-skewed caches due to these benchmarks

164

8 Performance Evaluation

0.01 0.1 1 10

0

50

100

Access Size [MB]

R
ea
d
L
at
en
cy

[n
s]

(l
ow

er
is

b
et
te
r)

Sass BIP

Sass+Quarta LRU

Skewed50 Rand

Scatter Skewed

Figure 7.13: Memory read latency with lat mem rd for different cache configura-
tions with 64B strides.

0.01 0.1 1 10

0

50

100

Access Size [MB]

R
ea
d
L
at
en
cy

[n
s]

(l
ow

er
is

b
et
te
r)

Sass BIP

Sass+Quarta LRU

Skewed50 Rand

Scatter Skewed

Figure 7.14: Memory read latency with lat mem rd for different cache configura-
tions with 256B strides.

(cf. Figure 7.11) [26]. As expected, SassCache’s hit rate in this benchmark
lies slightly below the Skewed50 configuration, due to SassCache’s smaller
effective size of ∼39%. Here, ScatterCache and the skewed cache have
the highest total hit rate, with SassCache being 4 p.p. lower, due to the
data (−4.7 p.p.) and instruction (−6.3 p.p.) hit rates. The total hit rate
of LRU is 5.2 p.p. lower than SassCache. Although LRU’s instruction hit
rate outperforms SassCache by 7.1 p.p., its data hit rate is 6.7 p.p. lower.
The reason for this is a high code locality but a weaker data locality in
scimark2.

Caches with random replacement policy, e.g., our skewed caches, show a
smoother roll-off after the L2 cache [26]. We verified this for SassCache
using the lmbench lat mem rd benchmark [73] for 8MB size and 64B
(i.e., cache line size) strides, cf. Figure 7.13. SassCache closely follows
Skewed50, due to its smaller effective size.

165

7 SassCache: Scatter and Split Securely

C
R
C
32

FF
T

ad
pc
m

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fis
h

di
jk
st
ra

gs
m

jp
eg

la
m
e

m
ad

pa
tr
ic
ia

qs
or
t

ri
jn
da
el

sh
a

st
ri
ng
se
ar
ch

su
sa
n

ti
ff2
bw

ti
ff2
rg
ba

ti
ffd
it
he
r

ti
ffm

ed
ia
n

ty
pe
se
t

m
ea
n

−20

−10

0
H
it
R
at
e
∆

[%
]

(h
ig
h
er

is
b
et
te
r)

LRU BIP Scatter Skewed Skewed50 Sass

Figure 7.15: MiBench cache hit rate in gem5 with a small dataset. Percentage
points over Rand.

C
R
C
32

FF
T

ad
pc
m

ba
si
cm
at
h

bi
tc
ou
nt

bl
ow
fis
h

di
jk
st
ra

gs
m

jp
eg

la
m
e

m
ad

pa
tr
ic
ia

qs
or
t

ri
jn
da
el

sh
a

st
ri
ng
se
ar
ch

su
sa
n

ti
ff2
bw

ti
ff2
rg
ba

ti
ffd
it
he
r

ti
ffm

ed
ia
n

ty
pe
se
t

m
ea
n

−20

−10

0

H
it
R
at
e
∆

[%
]

(h
ig
h
er

is
b
et
te
r)

LRU BIP Scatter Skewed Skewed50 Sass

Figure 7.16: MiBench cache hit rate in gem5 with a large dataset. Percentage
points over Rand.

With a 256B stride size the step between the L2 and higher memory
levels is shifted to a larger access size, cf. Figure 7.14. This shift results
from skewed caches breaking the alignment of addresses and the cache set
indices. In traditional set-associative caches, lat mem rd’s 256B stride size
performs sparse but aligned memory accesses that use every fourth cache
index. With skewed caches the indices are random and, hence, there are
fewer cache conflicts. Thus, for this type of access pattern, skewed caches
generally improve the hit rate and lead to lower read latencies for larger
ranges of memory [26]. However, due to SassCache’s smaller effective cache
size, this effect is less pronounced than for, e.g., ScatterCache. Still, the
apparent size shifts from 1MB to about 1.5MB (≈ 4 ∗ 0.39).
We also run the MiBench benchmark (small and large setting) on gem5
with the Rand cache as a baseline. The average hit rate in MiBench (small
dataset) is 11.8 p.p. (2.4 p.p. to 22.5 p.p.) lower than Rand, cf. Figure 7.15.
For MiBench with the large dataset, cf. Figure 7.16, this average improves
to be 7.5 p.p. (0.8 p.p. to 20.2 p.p.) lower than Rand. SassCache has on

166

8 Performance Evaluation

bw
av
es

ca
ct
u

de
ep
sje
ng

ex
ch
an
ge
2

fo
to
ni
k

im
ag
ick lb

m
le
el
a
m
cf

na
b

om
ne
tp
p
pe
rl

po
p2 ro

m
x2
64

xa
la
nc xz

m
ea
n

−10

−5

0

5
(h
r x
/h

r r
a
n
d
−

1
)
·1
0
0
[%

] SassCache Scatter LRU CEASER-S

Figure 7.17: Change in LLC hit rate over Rand for SPECspeed 2017. Std.dev.
< 0.03% for all tests over 10 runs.

average a 12.1 p.p. and 7.6 p.p. lower hit rate for MiBench small and
large, respectively, than ScatterCache. SassCache’s hit rate is on average
13.6 p.p.(MiBench small) and 9.2 p.p.(MiBench large) lower than for LRU
and BIP caches, which have the highest hit rates. In both cases, the
Skewed50 consistently has a higher hit rate than SassCache but strongly
correlates with it, confirming skewed cache characteristics for SassCache
and lower hit rates in the single-tenant scenario with the lower effective
cache size.

Over all GEM5 benchmarks, SassCache has a 9.8 p.p. lower hit rate than
Rand and 11.7 p.p. lower than LRU in the single-tenant gem5 evaluation.
For comparison, at C=63%, the average hitrates go down by 4.6 p.p. and
6.4 p.p. compared to Rand and LRU. The scimark2 benchmark shows that
in some workloads, skewed caches outperform non-skewed caches, and Sass
Cache benefits from this as well. The variation in hit rate is expected due
to each benchmark having different access patterns with different locality
properties. Thus, each workload benefits differently from a particular cache
architecture which are tailored towards certain locality properties, e.g.,
via their replacement policy.

QUARTA Latency. Though we expect to hide latency in lower level accesses
(see Section 6.1), we also evaluate a 12c (3.25 ns@3GHz) overhead in our
L2 (see Figures 7.13 and 7.14). This is a costly 30% increase at our LLC
base latency of 40c. Compared to SassCache without overhead, hitrates
remain virtually the same (<±0.2 p.p. avg. difference), while scimark
scores drop 4.1% on average.

167

7 SassCache: Scatter and Split Securely

92

93

94

95

96
h
it
ra
te
[%

]
u
n
li
m
it
ed

sc
a
n

SassCache Scatter LRU CEASER-S way-split

0 1 2 3 4 5 6 7

92

93

94

95

96

h
it
ra
te
[%

]
li
m
it
ed

sc
a
n

Figure 7.18: Average simulated hit rates of SPECspeed 2017 with 0-7 parallel
domain workloads. Size of way-split partions: 0: 100%, 1: 50%, 2-
3: 25%, 4-7: 12.5%. Top: adversarial workload with 64B stride,
unlimited size. Bottom: 1 024B stride repeating 512 addresses.

8.3 Custom Cache Simulator Setup

We build a cache simulator based on the model by Purnal et al. [3]. We
evaluate SassCache against ScatterCache, CEASER-S, standard LRU, Rand,
and a way-split cache (an approximation of Intel CAT [42]), in SPEC
CPU 2017.

To run benchmarks in our simulator, we collect real memory access traces
(including instructions) with the Intel PIN tool [54]. While this is much
faster than gem5 emulation, we still need to limit the size of our traces.
Like prior works [22, 26, 62], we collect a representative sample trace over
250 million instructions for each benchmark.

Our simulator implements 2 cache levels. The L1 consists of 2 set-associative,
32 kB, 8-way data and instruction caches with tree-PLRU replacement
and is the same for all LLCs. The LLC has a size of 1MB and 16 ways,
similar to modern Intel slice configurations. SassCache is configured for
39% coverage, for CEASER-S we use 2 partitions and LRU replacement.
Our way-split cache supports evenly splitting the cache into separate
domains along the ways.

168

8 Performance Evaluation

8.4 Custom Cache Simulator Results

We run our recorded traces through the cache simulator to measure
LLC hit rates in SPECspeed 2017. Since average hit rates vary between
benchmarks, we compare the ratio of hit rates for 4 cache implementations
to the Rand cache in Figure 7.17. Owing to its reduced size per security
domain, SassCache performs worse than other caches in most tests, which
is more pronounced in benchmarks with larger working sets or those
optimized for LRU replacement. As in Section 8.2, we see that SassCache
is at a disadvantage in single-threaded performance evaluations. When
compared to the overall best, LRU, we see average hit rate drops of 1.75%,
0.46%, 0.08%, and 0.52% for SassCache, ScatterCache, CEASER-S, and
Rand, respectively.

We also examine SassCache when several competing workloads run con-
currently, e.g., in a multi-tenant cloud. Here we simulate only the LLC,
as the L1 is not shared among cores. We run SPEC traces as before, but
interleave them with up to 7 adversarial workloads. We test 2 different
types of adversarial workloads: a linear scan over an infinite range with
64B stride (e.g., streaming a lot of data), and a scan over a limited set
of 512 addresses with a stride of 1 024B, both shown in Figure 7.18. We
configure our way-split cache such that it always has at least as many
separate domains as workloads, i.e., 1/2/4/8, which results in the visible
performance plateaus. In this particular test, we run only the memory
accesses of the benchmark traces, leaving out the instruction accesses.
This accentuates the different behaviors of the caches for these parallel
workloads. As Figure 7.18 shows, caches like SassCache and ScatterCache
suffer under workloads that use many cache lines without re-referencing
them because of their random replacement, which can cause evictions even
on recently used lines. For SassCache, this effect is at first counteracted
by its isolation property. With few parallel workloads, many cache lines
are exclusive to each domain. LRU-based caches fare better in general,
as often-referenced cache lines can consistently survive streaming. The
way-split cache leads under this workload, because the complete domain
separation provides excellent thrashing protection as long as the workloads
fit within the reduced cache size. The second workload is more adversarial
to LRU-based caches, as not all sets are filled optimally. Here, SassCache
can provide higher hit rates than a way-split cache while offering almost
the same security.

169

7 SassCache: Scatter and Split Securely

These parallel tests reveal an important property of SassCache. While
single-threaded tests show decreased performance because of the reduced
size and random replacement, relative performance of SassCache increases
with higher parallelism. This is because parallel workloads proportionally
reduce the average share of cache a thread can use. Critically, this reduction
does not compound multiplicatively with the coverage C of SassCache, so
a coverage of 39% will already lose importance with 4 cores.

Finally, we compare the hit rates for different C of SassCache for the
2-level setup. The average SPEC hit rate for SassCache (cf. Figure 7.17)
is 88.36% at 39% coverage. For coverages of 12%, 22%, 63%, 86%, and
98%, this changes to 86.18%, 87.29%, 88.89%, 89.17%, and 89.28%. This
almost reaches ScatterCache’s performance for 98% coverage and clearly
drops towards 12% coverage as expected.

9 Conclusion

In this paper, we proposed SassCache, a novel secure cache design based
on a low-latency cryptographic function tailored to this use case. Sass
Cache eliminates the attacker’s capability of building an eviction set
in 99.999 97% of the cases. We found that the hiding property allows
for a higher share of the cache than static partitioning, while providing
virtually the same security. Furthermore, we showed that SassCache also
mitigates the cache occupancy channel, e.g., a cache occupancy attack
on OpenSSL AES T-Tables or mbedTLS RSA-4096 can succeed in less
than 0.000 5% of cases. Our performance evaluation revealed that Sass
Cache only has an overhead of 1.75% on average on the last-level cache
hit rate in the SPEC2017 and an average decrease of 11.7 p.p. in hit rate
for MiBench, GAP, and Scimark benchmark compared to a set-associative
LRU cache. Hence, we conclude that SassCache is a promising design for
use in appropriate, security-critical contexts.

Acknowledgments

This research is supported in part by the European Research Council (ERC
#101020005), the Flemish Government (FWO project TRAPS) and Cyber-
Security Research Flanders (#VR20192203). Antoon Purnal is supported

170

References

by a grant of the Research Foundation - Flanders (FWO). Additional fund-
ing was provided by a generous gift from Google. Any opinions, findings,
and conclusions or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the funding parties.

References

[1] Daniel Genkin, William Kosasih, Fangfei Liu, Anna Trikalinou,
Thomas Unterluggauer, and Yuval Yarom. CacheFX: A Framework
for Evaluating Cache Security. In: arXiv:2201.11377 (2022) (pp. 138,
159).

[2] Chongzhou Fang, Han Wang, Najmeh Nazari, Behnam Omidi,
Avesta Sasan, Khaled N Khasawneh, Setareh Rafatirad, and
Houman Homayoun. Repttack: Exploiting Cloud Schedulers to
Guide Co-Location Attacks. In: arXiv:2110.00846 (2021) (p. 161).

[3] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Ver-
bauwhede. Systematic Analysis of Randomization-based Protected
Cache Architectures. In: S&P. 2021 (pp. 137, 140–146, 156, 157,
159, 168).

[4] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks. In: CCS. 2021 (p. 140).

[5] Gururaj Saileshwar and Moinuddin K. Qureshi. MIRAGE: Mitigat-
ing Conflict-Based Cache Attacks with a Practical Fully-Associative
Design. In: USENIX Security Symposium. 2021 (pp. 137, 141, 143,
144, 153, 156, 160).

[6] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and
Peng Liu. Randomized last-level caches are still vulnerable to cache
side-channel attacks! But we can fix it. In: S&P. 2021 (pp. 140,
143).

[7] AMD. AMD SEV-SNP: Strengthening VM Isolation with Integrity
Protection and More. 2020. url: https://www.amd.com/syste
m/files/TechDocs/SEV-SNP-strengthening-vm-isolation-wi

th-integrity-protection-and-more.pdf (visited on 06/2020)
(p. 162).

171

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

[8] Rahul Bodduna, Vinod Ganesan, Patanjali Slpsk, Kamakoti Veezhi-
nathan, and Chester Rebeiro. Brutus: Refuting the security claims
of the cache timing randomization countermeasure proposed in
ceaser. In: IEEE Computer Architecture Letters 19.1 (2020), pp. 9–
12 (p. 137).

[9] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel
Emer, and Mengjia Yan. CaSA: End-to-end Quantitative Security
Analysis of Randomly Mapped Caches. In: MICRO. 2020 (pp. 137,
140–143).

[10] Dušan Božilov, Maria Eichlseder, Miroslav Kneževic, Baptiste Lam-
bin, Gregor Leander, Thorben Moos, Ventzislav Nikov, Shahram
Rasoolzadeh, Yosuke Todo, and Friedrich Wiemer. PRINCEv2 –
More Security for (Almost) No Overhead. In: SAC. 2020 (p. 149).

[11] Andrei Frumusanu. The Ampere Altra Review: 2x 80 Cores Arm
Server Performance Monster. 2020. url: https://www.anandtech
.com/show/16315/the-ampere-altra-review/ (p. 153).

[12] Pascal Nasahl, Robert Schilling, Mario Werner, Jan Hoogerbrugge,
Marcel Medwed, and Stefan Mangard. CrypTag: Thwarting Physi-
cal and Logical Memory Vulnerabilities using Cryptographically
Colored Memory. In: arXiv:2012.06761 (2020) (p. 153).

[13] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: abusing Intel
SGX to conceal cache attacks. In: Cybersecurity 3.1 (2020), p. 2
(pp. 157, 161).

[14] Brian C. Schwedock and Nathan Beckmann. Jumanji: The Case
for Dynamic NUCA in the Datacenter. In: MICRO. 2020 (p. 142).

[15] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang,
and Peng Liu. Randomized Last-Level Caches Are Still Vulner-
able to Cache Side-Channel Attacks! But We Can Fix It. In:
arXiv:2008.01957 (2020) (p. 141).

[16] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. PhantomCache:
Obfuscating Cache Conflicts with Localized Randomization. In:
NDSS. 2020 (pp. 137, 141, 143, 144).

[17] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic.
Sonicboom: The 3rd generation berkeley out-of-order machine.
In: Fourth Workshop on Computer Architecture Research with
RISC-V. 2020 (p. 152).

172

https://www.anandtech.com/show/16315/the-ampere-altra-review/
https://www.anandtech.com/show/16315/the-ampere-altra-review/

References

[18] Johan De Gelas. AMD Rome Second Generation EPYC Review:
2x 64-core Benchmarked. 2019. url: https://www.anandtech.co
m/show/14694/amd-rome-epyc-2nd-gen/ (p. 153).

[19] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi.
HybCache: Hybrid side-channel-resilient caches for trusted execu-
tion environments. In: USENIX Security Symposium. 2019 (pp. 142,
143).

[20] Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Volume 3 (3A, 3B & 3C): System Programming Guide. 2019
(p. 154).

[21] Antoon Purnal and Ingrid Verbauwhede. Advanced profiling for
probabilistic Prime+Probe attacks and covert channels in Scatter-
Cache. In: arXiv:1908.03383 (2019) (p. 143).

[22] Moinuddin K Qureshi. New attacks and defense for encrypted-
address cache. In: ISCA. 2019 (pp. 137, 141–143, 159, 160, 162,
168).

[23] RISC-V Foundation. The RISC-V Instruction Set Manual, Vol.
II: Privileged Architecture, Version 20190608-Priv-MSU-Ratified.
Ed. by Andrew Waterman and Krste Asanović. 2019 (p. 154).

[24] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust Website Fin-
gerprinting Through The Cache Occupancy Channel. In: USENIX
Security Symposium. 2019 (pp. 143, 157, 160).

[25] Pepe Vila, Boris Köpf, and Jose Morales. Theory and Practice of
Finding Eviction Sets. In: S&P. 2019 (pp. 140, 142, 157).

[26] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In: USENIX
Security. 2019 (pp. 137, 140, 141, 143, 144, 147, 153–156, 159, 160,
162, 163, 165, 166, 168).

[27] Pi-Feng Chiu, Christopher Celio, Krste Asanović, David Patterson,
and Borivoje Nikolić. An out-of-order RISC-V processor with re-
silient low-voltage operation in 28nm CMOS. In: IEEE Symposium
on VLSI Circuits. 2018 (p. 152).

[28] Maria Eichlseder and Daniel Kales. Clustering Related-Tweak
Characteristics: Application to MANTIS-6. In: IACR Transactions
on Symmetric Cryptology 2018.2 (2018), pp. 111–132 (p. 150).

173

https://www.anandtech.com/show/14694/amd-rome-epyc-2nd-gen/
https://www.anandtech.com/show/14694/amd-rome-epyc-2nd-gen/

[29] Moinuddin K Qureshi. CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping. In: MICRO. 2018
(pp. 137, 141, 142, 153, 155, 156, 159, 160, 162).

[30] David Trilla, Carles Hernandez, Jaume Abella, and Francisco J. Ca-
zorla. Cache Side-channel Attacks and Time-predictability in High-
performance Critical Real-time Systems. In: DAC. 2018 (pp. 137,
142).

[31] Roberto Avanzi. The QARMA Block Cipher Family: Almost MDS
Matrices Over Rings With Zero Divisors, Nearly Symmetric Even-
Mansour Constructions With Non-Involutory Central Rounds, and
Search Heuristics for Low-Latency S-Boxes. In: IACR Transactions
on Symmetric Cryptology 2017.1 (2017), pp. 4–44 (pp. 137, 150,
153).

[32] Marc Green, Leandro Rodrigues-Lima, Andreas Zankl, Gorka Ira-
zoqui, Johann Heyszl, and Thomas Eisenbarth. AutoLock: Why
Cache Attacks on ARM Are Harder Than You Think. In: USENIX
Security Symposium. 2017 (p. 142).

[33] Zecheng He and Ruby B Lee. How secure is your cache against
side-channel attacks? In: MICRO. 2017 (p. 142).

[34] Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner,
Daniel Gruss, Carlo Alberto Boano, Stefan Mangard, and Kay
Römer. Hello from the Other Side: SSH over Robust Cache Covert
Channels in the Cloud. In: NDSS. 2017 (p. 137).

[35] ARM Connected blog. Armv8-A architecture: 2016 additions. 2016.
url: https://www.community.arm.com/processors/b/blog/po
sts/armv8-a-architecture-2016-additions (p. 153).

[36] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang
Meng Sim. The SKINNY Family of Block Ciphers and Its Low-
Latency Variant MANTIS. In: CRYPTO. 2016 (p. 150).

[37] Victor Costan and Srinivas Devadas. Intel SGX Explained. In:
Cryptology ePrint Archive, Report 2016/086 (2016) (p. 162).

[38] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Mini-
mal hardware extensions for strong software isolation. In: USENIX
Security Symposium. 2016 (pp. 141, 145).

174

https://www.community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions
https://www.community.arm.com/processors/b/blog/posts/armv8-a-architecture-2016-additions

References

[39] Mehmet Sinan Inci, Berk Gulmezoglu, Thomas Eisenbarth, and
Berk Sunar. Co-location detection on the cloud. In: COSADE. 2016
(p. 161).

[40] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache
side channel attacks in cloud computing. In: HPCA. 2016 (p. 137).

[41] Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP
Benchmark Suite. In: arXiv:1508.03619 (2015) (p. 162).

[42] Intel. Improving Real-Time Performance by Utilizing Cache Allo-
cation Technology: Enhancing Performance via Allocation of the
Processor’s Cache. 2015. url: https://www.intel.com/content
/dam/www/public/us/en/documents/white-papers/cache-all

ocation-technology-white-paper.pdf (p. 168).

[43] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (pp. 137, 140, 157).

[44] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse Engineering Intel
Complex Addressing Using Performance Counters. In: RAID. 2015
(p. 139).

[45] Clémentine Maurice, Christoph Neumann, Olivier Heen, and
Aurélien Francillon. C5: Cross-Cores Cache Covert Channel. In:
DIMVA. 2015 (pp. 157, 160).

[46] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and
Angelos D Keromytis. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In: CCS. 2015 (p. 137).

[47] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In:
MICRO. 2014 (p. 137).

[48] Somayeh Sardashti, André Seznec, and David A Wood. Skewed
compressed caches. In: MICRO. 2014 (p. 153).

[49] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security Symposium. 2014 (p. 140).

[50] ARM. ARM Architecture Reference Manual ARMv8. ARM Lim-
ited, 2013 (p. 154).

[51] Nathan Beckmann and Daniel Sanchez. Jigsaw: Scalable software-
defined caches. In: PACT. 2013 (p. 142).

175

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf

[52] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical Timing
Side Channel Attacks against Kernel Space ASLR. In: S&P. 2013
(p. 137).

[53] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun,
Miroslav Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav
Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren
S. Thomsen, and Tolga Yalçin. PRINCE – A Low-Latency Block
Cipher for Pervasive Computing Applications. In: ASIACRYPT.
2012 (pp. 149, 150).

[54] Intel. Pin - A Dynamic Binary Instrumentation Tool. 2012. url:
https://software.intel.com/en-us/articles/pin-a-dynami

c-binary-instrumentation-tool (p. 168).

[55] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-
Ghazaleh, and Dmitry Ponomarev. Non-Monopolizable Caches:
Low-Complexity Mitigation of Cache Side Channel Attacks. In:
ACM Transactions on Architecture and Code Optimization (TACO)
8.4 (2011) (p. 142).

[56] Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and
efficient fine-grain cache partitioning. In: ISCA. 2011 (p. 142).

[57] Jingfei Kong, Onur Acıiçmez, Jean-Pierre Seifert, and Huiyang
Zhou. Hardware-software integrated approaches to defend against
software cache-based side channel attacks. In: HPCA. 2009 (p. 137).

[58] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan
Savage. Hey, You, Get Off of My Cloud: Exploring Information
Leakage in Third-Party Compute Clouds. In: CCS. 2009 (pp. 137,
161).

[59] Kehuan Zhang and XiaoFeng Wang. Peeping Tom in the Neigh-
borhood: Keystroke Eavesdropping on Multi-User Systems. In:
USENIX Security Symposium. 2009 (p. 141).

[60] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical
page coloring-based multicore cache management. In: EuroSys.
2009 (p. 145).

[61] Zhenghong Wang and Ruby B. Lee. A Novel Cache Architec-
ture with Enhanced Performance and Security. In: MICRO. 2008
(pp. 137, 141).

176

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

References

[62] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely,
and Joel Emer. Adaptive insertion policies for high performance
caching. In: ACM SIGARCH Computer Architecture News 35.2
(2007), p. 381 (p. 168).

[63] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In: ACM SIGARCH
Computer Architecture News 35.2 (2007), p. 494 (pp. 137, 141).

[64] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (pp. 137,
140).

[65] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
2005. url: http://cr.yp.to/antiforgery/cachetiming-20050
414.pdf (p. 140).

[66] Mathias Spjuth, Martin Karlsson, and Erik Hagersten. Skewed
caches from a low-power perspective. In: Conf. Computing Frontiers.
2005 (p. 153).

[67] Roldan Pozo and Bruce R. Miller. Scimark 2.0. 2004. url: https:
//math.nist.gov/scimark2/ (pp. 162, 164).

[68] Yukiyasu Tsunoo, Teruo Saito, and Tomoyasu Suzaki. Cryptanaly-
sis of DES implemented on computers with cache. In: CHES. 2003
(p. 140).

[69] Andrés Djordjalian. Minimally-skewed-associative caches. In: Sym-
posium on Computer Architecture and High Performance Comput-
ing. Proceedings. 2002 (p. 153).

[70] Dan Page. Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel. In: Cryptology ePrint Archive, Report 2002/169
(2002) (p. 140).

[71] Matthew R. Guthaus, Jeff Ringenberg, Dan Ernst, Todd Austin,
Trevor Mudge, and Richard B. Brown. MiBench: A free, commer-
cially representative embedded benchmark suite. In: WWC. 2001
(p. 162).

[72] Paul Kocher. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In: CRYPTO. 1996 (p. 140).

[73] Larry McVoy and Carl Staelin. Lmbench: Portable Tools for Per-
formance Analysis. In: USENIX ATC. 1996 (pp. 162, 165).

[74] André Seznec. A case for two-way skewed-associative caches. In:
ACM Computer Architecture News (1993) (p. 141).

177

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://math.nist.gov/scimark2/
https://math.nist.gov/scimark2/

[75] Alan Jay Smith. A Comparative Study of Set Associative Memory
Mapping Algorithms and Their Use for Cache and Main Memory.
In: IEEE Trans. Software Eng. 4.2 (1978) (p. 140).

178

8
Fast and Efficient Secure L1

Caches for SMT

Publication Data

Lukas Giner, Roland Czerny, Simon Lammer, Aaron Giner, Paul Gollob,
Jonas Juffinger, and Daniel Gruss. Fast and Efficient Secure L1 Caches
for SMT. In: ARES. 2025

Contributions

Main author.

179

8 Fast and Efficient Secure L1 Caches for SMT

Fast and Efficient Secure L1 Caches for SMT

Lukas Giner, Roland Czerny, Simon Lammer, Aaron Giner,
Paul Gollob, Jonas Juffinger, and Daniel Gruss

Graz University of Technology

Abstract

Secure randomized caches use the latency budgets of last-level caches to
isolate data by security domain. In contrast, L1 caches are very latency-
and size-constrained (by cache ways and page size), hindering both the
adoption of secure randomized designs and increases in size without losing
backward compatibility due to page size changes.

We propose a new secure and larger L1 cache design for SMT cores: SMT
Cache. SMTCache uses separate, identical L1 caches (slices) to isolate
security domains. The overall cache size scales with the number of SMT
threads, with individual slices mirroring current designs without chang-
ing the page size. SMTCache consumes less power than larger sets and
does not increase hit latency. We show that SMTCache is a principled
mitigation against L1 cache attacks and fundamentally precludes vul-
nerabilities like L1TF. Further, we measure that SMTCache improves
L1 cache performance compared to current designs and even remains
competitive with larger caches. For instance, on a system with SMT-2,
SMTCache provides equivalent hit ratios across the SPEC CPU2017 suite
to a state-of-the-art L1 cache of comparable size while improving system
security and significantly reducing energy costs.

1 Introduction

Caches hide the high access times of main memory by storing recently
used data within the CPU. With low latency, limited space, and sharing
across security contexts, they are an attractive target for attacks. Attacks
range from side channels [10, 33, 34, 35, 36] to severe vulnerabilities
like Meltdown [13] and its variants [11, 19, 23, 24, 31, 32]. All of these
attacks rely on the cache being a shared resource without security domain
isolation.

180

1 Introduction

While recent secure cache proposals address this problem for the large
last-level caches [3, 5, 9, 17, 22, 25], low latency is crucial for L1 caches.
Hence, we cannot simply apply last-level secure cache designs to the L1
cache. Furthermore, partitioning the L1 cache is costly as it is already very
size-constrained. Due to the virtual indexing, the L1 size is determined
by the number of ways times the page size, which for commodity laptop,
desktop, and server CPUs has been 4KiB for over a decade. This limits
an 8-way L1 cache to a maximum size of 4KiB · 8 = 32KiB. Thus, there
are currently only two options to increase the L1 cache size, without even
taking security considerations into account: First, like some recent Intel
server CPUs, the number of ways per set is increased (e.g., from 8 to
12), at the cost of a super-linear increase in energy consumption [50, 56].
Second, like recent Apple CPUs, the page size could be increased (e.g.,
to 16KiB [12]). However, this is only possible given Apple’s firm control
of both hardware and software on their machines, reducing the need for
backward compatibility. Still, with this change, Apple increased the L1
cache size to 128KiB. While this shows that die area near the execution
core is available, it further emphasizes the page size as a limiting factor to
efficiently scale the L1 and its lack of security that becomes increasingly
interesting for attacks.

This leads us to investigate the following research questions:
How can we prevent L1 cache attacks in a principled way? Is it possible
to increase L1 cache size and security without substantial efficiency loss
or software-breaking changes? What is the energy cost of scaling the L1
cache?

In this paper, we propose SMTCache, a secure L1 data cache (L1D) design
that offers advantages in L1 cache size, security, and energy efficiency on
CPUs with simultaneous multithreading (SMT). SMTCache stays within
the existing ISA specifications as well as power and latency budgets of
commodity off-the-shelf CPUs. We achieve this by creating independent
L1D slices (like L3 slices) accessed by a memory address and a security
domain. Every domain has its own L1 slice, ensuring principled data
separation.

In our default configuration, SMTCache does not require operating system
support and switches domains based on existing mechanisms, i.e., user
mode and kernel mode. This provides out-of-the-box data separation
between processes and the operating system. From the point of view of
processes, they have their own private L1D cache without interference
or data leakage from one SMT thread or process to another. Often, the

181

8 Fast and Efficient Secure L1 Caches for SMT

number of processes active on a core is higher than the number of L1D
slices (we evaluate up to 9 slices per core). If a process is scheduled to run
on a core where it does not have a slice assigned, the least recently used
(LRU) slice is flushed to higher cache levels, and the new process gets this
slice exclusively until it is eventually flushed for a different process.

Each slice can be the same size as current L1D caches, as sets are addressed
by their domain in addition to the virtual address, thereby sidestepping
the page-size limitation while scaling the cache. The maximum active
number of slices is limited to the number of SMT threads. For SMT-2,
this doubles the effective available L1D cache space for simultaneously
running processes. When the operating system schedules only a small
number of processes on a core, this markedly increases performance as
processes are not competing over cache space. With more slices than SMT
threads, inactive slices store currently unused data for different processes
that are not running while only drawing static power.

We evaluate the performance of SMTCache in CacheSim [4] and on traces
recorded on a native Linux server running different workloads, as well
as the functionality via micro-benchmarks with Linux on gem5 [14, 51].
Our evaluation shows that performance scales very well with SMT and
often exceeds the performance of an equivalently large standard cache due
to the inherent thrashing protection. For SMT-2, and especially SMT-4
(Section 6.1), SMTCache increases the available L1 cache per thread while
guaranteeing fairness and security. We find that a number of slices higher
than SMT ways + 1 only minimally improves performance, as processes
rarely return to an empty L1D cache at that point.

Contributions. In summary, our main contributions are:

• We propose a novel secure L1 cache design, SMTCache, providing strict
isolation between security domains on the hardware level.

• SMTCache builds on the synergetic introduction of security and perfor-
mance enhancements to expand cache sizes without breaking backward
compatibility.

• We provide a security argument for SMTCache, showing that it mitigates
a range of state-of-the-art attacks in a principled way.

• We evaluate the performance of SMTCache in many different configura-
tions and demonstrate that it offers competitive hit ratios even when
compared to larger monolithic L1 caches like Apple’s M1.

Outline. Section 2 presents background and Section 3 the design. Sec-
tion 4 discusses energy and area costs and Section 5 security. Section 6

182

2 Background

evaluates the performance. Section 7 presents related and future work.
Section 8 concludes.

2 Background

In this section, we discuss caches, limiting factors for their size, traditional
and secure L1 designs as well as their attack surfaces.

Caches. CPU caches are buffers close to the CPU, orders of magnitude
smaller than main memory. They hide high memory access latencies
for recently used data. In modern set-associative caches, addresses are
statically mapped to one of many sets of cache lines and occupy any of
the ways within that set.

Traditional caches are organized in a 3-level hierarchy, with the cache
closest to the CPU (L1) being the smallest and fastest, with acritical
impact on CPU performance. Unlike higher-level caches, most L1 caches
use the virtual address to index the cache set to reduce latency by already
looking for a cache line while translating the address. To not map a physical
address to multiple sets, the index is taken only from bits shared with the
virtual address, i.e., the page offset, typically 12 bit. This limits the L1
cache size by the page size and number of ways, e.g., 4KiB·8ways = 32KiB.
Hence, traditional L1 cache size can only be increased with the page size,
the number of ways, or by dropping the virtually indexed design. Intel
increased the L1D cache size of the “Core” CPUs from 16KiB to 32KiB
and 48KiB with the number of ways, from 4 to 8 and 12. In the Apple
M1, the 16KiB page size allows for a 128KiB L1D cache and a 192KiB
L1 instruction cache (L1I).

The drawback of increasing the associativity is a rising energy cost per
access due to two factors: Firstly, the number of tags that need to be
searched to determine a cache hit increases proportionally to the number
of ways. Implementations may also load the data of all lines in a set at the
time of the tag comparison [47], further adding to the increased energy
demand. Secondly, super-linear components to the power draw grow with
the size of a cache set [50, 56].

Cache Coherence. When multiple cores access the same memory
location on a CPU with private, per-core caches, writes on one core need
to become visible to other cores as soon as possible. There are various
coherence protocols that ensure this memory consistency. In the simplest

183

8 Fast and Efficient Secure L1 Caches for SMT

case, caches need to know if a local copy of a cache line is modified, shared,
or invalid (MSI). There are two common methods to implement coherence
protocols, snooping and cache directories [15]. Snooping protocols work
by broadcasting each memory request to all caches but are only viable for
a low number of caches. Directories can solve this problem by centralizing
the protocol’s state information at a point of coherence. In inclusive cache
hierarchies, the last-level cache (LLC) stores all cache lines found in lower
levels and can, therefore, also act as the directory.

Cache Attacks. As caches are shared and introduce timing differences,
they have been a popular target for side-channel research. In a cache
attack, an attacker observes different access times to their data to infer a
victim’s behavior. With knowledge about cache architecture, refined cache
attacks are possible.

Attacks on Cache Metadata. The simplest form of these attacks are
time-driven attacks, such as Bernstein’s attack [60] or Evict+Time [59].
The latter, for example, evicts an AES T-Table entry by filling the cache
set with attacker memory. By timing the victim’s execution the attacker
can infer if this entry was used. A more noise-resilient evolution is Prime+
Probe, where the attacker first primes a set by filling it, and then probes
it by timing accesses. If the victim used a line in this set in between, the
attacker measures a longer access and can observe the victim’s accesses
at the granularity of cache sets. Prime+Probe requires a set of addresses
that map to the same cache set, called an eviction set. The Flush+
Reload [48] attack enables cache line accuracy if attacker and victim
share memory, by not relying on set conflicts but measuring the target line
directly. The attacker uses the clflush instruction to evict the targeted
address precisely, and later measures it again to see if the victim has
brought it into the cache. Achieving shared memory with a victim is more
challenging than co-location, and clflush might be unavailable. Evict+
Reload [40, 43] removes the need for clflush by replacing it with set
eviction like Prime+Probe.

Attacks with Caches. Meltdown, Spectre, etc. [11, 29, 31] use caches for
their covert-channel to recover data encoded during speculative execution.
This is possible because the state of the caches is not reversed when a
speculatively execution is aborted. Meltdown variants leaking from the
L1 Cache (or the Line Fill Buffer) exploit caches that does not check
permissions when data is served.

184

3 The SMTCache Architecture

Core

Thread 1

Thread 2

Slice 1
Switch 1

Slice 2

Slice 3

Slice n
Switch 2

SMTCache
Controller

SMTCache

LLC

Figure 8.1: SMTCache abstract design for n slices. At most 2 slices are active
at the same time, one per SMT thread. The SMTCache controller
ensures coherence between slices and that SMTCache appears like a
normal cache to higher cache levels.

Secure Cache Designs and Related Work. With some of the attacks
known for decades, many secure cache designs have been proposed, gener-
ally based on two methods: randomization or partitioning. The former tries
to obscure access patterns by making them seemingly random, while the
later tries to make accesses unobservable. Many designs require complex
functions whose latency is too large for the L1 and only target the LLC [3,
5, 6, 7, 8, 9, 17, 22, 25, 30, 41] assuming the other caches are secure. In
Section 7 we detail these secure caches and highlight how SMTCache is
orthogonal to many of them and discuss how SMTCache can complement
them for improved security and performance.

3 The SMTCache Architecture

At the heart of SMTCache are a number of n identical slices; complete
L1 data caches with standard parameters, e.g., 8 ways, 32KiB size as
shown in Figure 8.1. At each context switch (security domain switch), one
slice is assigned to the process. Until the next context switch, requests
from the SMT thread are statically routed to this slice by a switch. From
the perspective of the core, cache hits on this slice behave identical to a
standard L1 design cache hit. The communication with the higher-level
caches, however, runs through the SMTCache controller (Section 3.3),
presenting SMTCache as a standard L1 cache. This, of course, adds extra
latency. While our design could also be used for instruction caches, we
focus on L1 data caches to limit the scope.

185

8 Fast and Efficient Secure L1 Caches for SMT

3.1 Domains

An important aspect of isolation-based designs is how security domains
are derived. We propose a basic in-hardware implementation augmented
with optional software control. The default configuration changes the
slice assignment when the process (PCID/CR3) or the protection ring
change. When the protection ring is 3, the CR3 register represents the
domain ID, when it is less than 3, it is considered the kernel domain,
regardless of the CR3 value. All kernel threads therefore share one slice,
while userspace processes are isolated. This ensures security boundaries in
line with standard OS process isolation. This is the backward-compatible
mode of the design that works regardless of OS version.

With OS support, this could be enhanced to be more or less precise via
MSRs. A process might, e.g., want to isolate its threads to maximize its
L1D cache size, while another might want to share one slice among an
entire process group. As this is highly workload dependent, we do not
evaluate OS support in this work.

Hypervisors and SGX. With a hypervisor, we can simply consider
ring -1 the only mandatory domain in the default configuration. Thus, the
hypervisor and guest can never share an L1. Intel SGX [2] has the unique
situation that the hardware is generally under the control of the untrusted
OS, yet SGX must be secure. We can accommodate this by always treating
each enclave as a unique domain, irrespective of any configuration the OS
might have chosen.

3.2 Slice Swapping

When a new domain not currently associated with a slice is assigned
to a core, one of the slices is chosen to be evicted. On eviction, the
hardware flushes all modified (dirty) cache lines to the higher cache levels,
unmodifed (clean) cache lines can simply be dropped. When the number
of slices equals the number of SMT ways n = nSMT , the slices can be
statically assigned to logical cores, and the current slice will be reused.
For n = nSMT + 1, the additional slice is always used for the kernel.

When n > (nSMT + 1), SMTCache chooses the slice to be evicted with a
modified LRU algorithm. Domains scheduled often are therefore likely to
keep their data in an inactive slice while they are descheduled, ready to
resume work when they are scheduled again (see Section 6.2).

186

3 The SMTCache Architecture

AThread 1 K C K F

BThread 2 K D K E

sch
ed

u
led

ta
sk
s

A K C K D K E K F

B A K B K D K C K

- B A C B B D E C

- - B A C C C D E

S
M
T
C
a
ch
e

L
R
U

sta
te

MRU

LRU

Time

Figure 8.2: Domain swapping with modified LRU for SMTCache with 4 slices.
Context switches cannot replace active caches and bring the last
active slice to the second-most recently used position. As the context
switches are performed by the kernel (K) its slice is always most or
second-most recently used automatically and can never be evicted.

Figure 8.2 shows an example of our modified LRU for 4 slices and SMT-2.
A thread is moved to the MRU position the moment it is newly scheduled
on the core. Because the process scheduling is always performed by the
kernel (K) it can always only be at the most or second-most recently
used position. This ensure that the slice of the kernel is “reserved” and
never evicted, guaranteeing fast kernel entries when there are more slices
than SMT ways. We modify standard LRU such that active threads can
never have their slice taken from them, regardless of their LRU position.
Additionally, swapped-out threads are placed in the second-most recent
position. This prevents long-running threads from immediately being the
new eviction candidate (see switch from B to D or C to F in Figure 8.2).
For a configuration of 5 slices, this means that 4 slices will be available
for user space domains. If the kernel is scheduled on both SMT threads at
the same time, they share one cache slice similar to normal CPUs where
both SMT threads share the L1 cache.

3.3 SMTCache Controller and Coherence

Multi-core processing with several simultaneously executing threads and
shared, writeable memory requires caches to implement a coherence proto-
col that ensures all threads work with consistent copies of modified data.

187

8 Fast and Efficient Secure L1 Caches for SMT

L2

L1

Cache Controller/Bus

re
a
d

re
sp

o
n
se

Hit

1

2

re
a
d

MissMiss Clean Miss

Hit

re
sp

o
n
se

1

2

3

re
a
d

Miss Miss Miss Dirty

Hit or Miss

re
sp

o
n
se

1

2

3

Figure 8.3: A read request can be satisfied by the same slice (left), by the L2
(middle), and by a sibling slice (right). Hits on clean lines in sibling
core are served from upper levels to prevent side-channel leakage.

Information about changes to a location in one cache is propagated to
other caches as soon as possible. SMTCache includes an extra coherency
controller that facilitates security-aware snooping for the L1 slices (see
Figure 8.1) to support shared memory, stay coherent between threads and
processes, and curb high lookup latency for writeable shared memory. It
handles misses from currently active L1 caches and requests from higher
cache levels.

The snooping protocol works like the standard coherence between L1I
and L1D caches. It avoids moving the attack surface from the L1 cache
slice one layer higher to a directory [26], as there are no evictions from
underprovisioning. Contrary to caches on different cores, the slices are
also in much closer physical proximity, which reduces the cost of snooping.
To reduce the energy costs of querying all slices for data, we propose a
dual-mode line lookup for each cache line’s tag and state data. When
answering a request from the local core, only the currently active slice’s set
is searched, and tag, state, and data can be loaded in parallel. In response
to a sibling-slice or remote miss, tag and state information from all slices
is requested in parallel, without loading cache line data simultaneously.

Requests from the core first go to the assigned slice, then, for a miss, are
forwarded to other slices and L2 cache at the same time (Figure 8.3). The
cache controller can also aggregate cache line states w.r.t. upper levels, it
can distinguish between a total miss in SMTCache and a hit on a clean
or dirty line in a sibling slice. When a miss occurs in the controller, the
request is served from the L2 cache. Likewise, when the data is found but
is clean, the request is still served from the L2 cache to prevent Flush+
Reload (see Section 5). When a sibling slice contains the requested data
and it is dirty, it can be served directly from there with limited security

188

4 Energy and Area Estimation

concerns. Since the position of the line is already known from the lookup
request, the corresponding set does not need to be searched again, saving
time and energy.

The slices together with the controller also keep track of copies and only
forward modified data when the last copy is evicted or a coherence message
from the upper level requires it. This avoids generating unnecessary traffic
up the hierarchy when a line is evicted from one slice but still present in
others. From a top-down view, SMTCache presents as a standard cache
controller within the larger coherency protocol while maintaining its own
internal state. Upon a request from a remote core, the controller can
locate the address in the slices and adjust the cache lines accordingly,
i.e., changing ownership, responding with data, or flushing lines. Again,
finding an address via the first broadcast already includes the location in
the slice’s set, so an extra lookup is unnecessary.

4 Energy and Area Estimation

Estimating energy and area overheads for commercial large-scale CPUs is
difficult as CPU vendors do not open-source competitive state-of-the-art
designs. Therefore, we follow the methodology of prior work [6, 9] and
use McPAT [54] with CACTI [56] to estimate energy and area overheads,
close to the actual hardware costs for commercial large-scale CPUs [54].
Like Townley et al. [6], we use the most recent Intel Xeon that McPAT
supports. For the cache, we configure CACTI [56] directly, providing more
fine-grained configuration and detailed information. The slices of SMT
Cache behave like separate caches that each contribute to the static power
consumption of the CPU. We interpolate unsupported non-power-of-two
values.

Area. The main area overhead of SMTCache is storage area, closely
resembling that of L1 caches in recent Apple CPUs. An increase from
32KiB to a 128KiB cache (like Apple’s) comes with a proportional area
growth of factor 4. The bus area increase is entirely negligible compared
to the storage. SMTCache has a about 1% area overhead from a basic
8-way cache due to additional complexity and tag bits added. However,
SMTCache scales much better than a naive extension of current cache
designs with a higher number of ways.

189

8 Fast and Efficient Secure L1 Caches for SMT

Table 8.1: Area and power overheads estimated with McPAT [54] and CACTI [56].

Number of Ways 8-way 12-way 16-way
2 slices
(8-way)

24-way
3 slices
(8-way)

32-way
4 slices
(8-way)

40-way
5 slices
(8-way)

Total L1 Cache Size 32KiB 48KiB 64KiB 64KiB 96KiB 96KiB 128KiB 128KiB 160KiB 160KiB
Number of SMT Cores† 1 1 2 2 2 2 4 4 4 4

Bus Area [mm2] 0.37 0.37 0.38 0.38 0.39 0.40 0.41 0.42 0.53 0.54
Bus Peak Dynamic [W] 2.04 2.08 2.11 2.13 2.15 2.13 2.27 2.14 2.41 2.45

Bus Subthreshold Leakage [W] 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Bus Runtime Dynamic [W] 2.04 2.08 2.11 2.13 2.15 2.13 2.27 2.14 2.41 2.45

L1 Dynamic read energy [nJ] 2.53 6.87 11.22 2.53 29.16 2.53 47.09 2.53 81.55 2.53
L1 Dynamic write energy [nJ] 2.58 7.01 11.45 2.58 29.73 2.58 48.01 2.58 82.72 2.58

L1 Standby Leakage [mW] 42.50 64.41 86.33 85.83 132.47 127.49 178.61 169.98 276.95 212.48
L1 Area [mm2] 3.77 9.26 14.75 7.63 36.52 11.32 58.30 15.10 100.54 18.87

L1 Max. Total Leak. (2 loads+stores/cycle) [W] 10.26 27.84 45.42 10.30 117.90 10.34 190.38 10.38 328.83 10.43
L1 Max. Total Leak. (4 loads+stores/cycle) [W] - - 90.77 20.52 235.70 20.56 380.63 20.60 657.47 20.64
L1 Max. Total Leak. (8 loads+stores/cycle) [W] - - - - - - 761.04 41.02 1314.59 41.07

† For a fair comparison, we adjusted the number of SMT cores to reflect the L1 cache sizes: 1 SMT core below 64KiB, 2 SMT cores for the 64KiB
to 96KiB range, and 4 SMT cores above. We simulate the results for 3 different configurations for the load and store ports from 2 to 8 loads and
store per cycle. The maximum total leakage significantly changes with the number of SMT cores and the number of loads and stores per cycle. As
the slices of SMTCache act as independent caches, they scale almost linearly in the maximum total leakage.

Energy. The dynamic read and write energy for a single operation
(2.53 nJ and 2.58 nJ respectively) stays at the level of the initial cache
design (see Table 8.1). While standby leakage increases significantly it is
negligible compared to overall power consumption. For the maximum total
leakage, we use the metrics of a current CPU, i.e., a throughput of 0.5
cache reads and writes per cycle. On a CPU with a 4 cycle cache latency,
two load and two store ports, and 4GHz clock, the upper bound for the
throughput is 2 billion cache reads and cache writes each per second,
which we also empirically tested on an Intel i7-8565U CPU.

For a fair comparison across all designs, we compute the maximum total
leakage for 1 SMT core for all caches with less than 64KiB, 2 SMT cores
for all caches from 64KiB to 96KiB, and 4 SMT cores for 128KiB or
more. As SMTCache slices act as entirely separate L1 caches, their energy
consumption only increases linearly with the number of slices. The two
slice variant of SMTCache has twice as much maximum total leakage, as
both caches can be fully utilized by the two SMT threads. However, even
at this point the maximum total leakage is lower than the 12-way L1 cache
without SMT and significantly lower than the 16-way L1 cache with two
SMT threads. This trend continues for the 96KiB to 160KiB caches. The
energy costs for the 40-way L1 cache are particularly prohibitive, whereas
SMTCache with SMT-4 support stays below the maximum total leakage
of the 16-way L1 cache.

190

5 Security

5 Security

SMTCache provides strong isolation guarantees for the L1 cache. Therefore,
we discuss how different cache contention and cache utilization channels
are mitigated by our design. However, equally importantly, we show how
SMTCache is a defense-in-depth against data leakage attacks.

Data Leakage (Defense in Depth). The strict separation of L1 slices
ensures that the L1 cache can no longer be a source for leakage of data at
rest, such as Meltdown [11, 13] and L1TF [11, 31, 32]. As requests from
one domain are never directly routed to the slice of a different domain, the
active L1 slice can never respond with data outside its domain. The request
to other domains is only issued with the request to the L2, which happens
after the permission check on Meltdown-affected hardware. Though or-
thogonal to SMTCache, a similar separation (or static partitioning) of the
line fill buffer (LFB) could be implemented to additionally prevent leaking
data in use, as seen in several microarchitectural data sampling (MDS)
attacks [19, 23, 24]. Though these vulnerabilities have been mitigated in
current CPU generations, designs with clear isolation boundaries provide
defense in depth against possible future leakage from similar sources. We
conclude that had these processors already followed a design like SMT
Cache, Meltdown [11, 13] and L1TF [11, 31, 32] would have had very little
security impact.

Kernel Domain. As mentioned in Section 3.1, the kernel shares a
single domain. This is in line with standard process isolation but leaves
open the possibility of (transient) confused deputy attacks. We weigh
this against the significant overhead of providing each process with a
separate kernel slice. We consider this an acceptable tradeoff, primarily
because confused deputy attacks in the case of SMTCache require both a
disclosure gadget in the victim’s kernel code and a leakage gadget in the
attacker’s. Additionally, this attack surface is known, and gadgets have
been systematically reduced in recent years.

OpenSSL AES. The AES T-Table implementation in OpenSSL is often
considered as a benchmark for side channels. The typically page-aligned
block of T-Tables (Te and Td) is accessed during the encryption, e.g.,
in the first round with a byte-wise xor of plaintext and key. With SMT
Cache, the initial prefetch256 call loads the tables into the L1 cache,
i.e., they are placed in separate slices of SMTCache. Consequently, we
cannot observe any contention.

191

8 Fast and Efficient Secure L1 Caches for SMT

mbedTLS RSA. Another side-channel attack commonly used as a bench-
mark is the mbedTLS RSA implementation. mbedTLS uses a windowed
square-and-multiply implementation. However, prior attacks [37, 45] ex-
ploited that a window size of 1 results in a simple square-and-multiply
where the buffer containing the exponent is used in different ways, allowing
to observe different contention patterns With SMTCache, the buffer is
first loaded into the L1 cache, i.e., again in separate slices of SMTCache
where we cannot observe any contention.

Generic Side Channels. In general, Prime+Probe builds on the foun-
dational assumption that an attacker can find the set that the victim
process’ targeted address is cached in and interact with it. Specifically,
the Prime step fills the entire set, thereby evicting the victim cache line.
The Probe step then measures how many of the attacker’s own addresses
are still cached after the victim has executed some code. If an address has
been replaced, the attacker infers that, with some likelihood, an address
from the victim was loaded. SMTCache cuts this primitive off at the root,
as two different security domains cannot interact with each other’s cache
line allocation anymore. As the sets are separated in both the slice and
the L1 directory, the victim’s set contents are unaffected by Prime+Probe
or other attacks that manipulate the replacement algorithm.

Flush+Reload and Flush+Flush rely on shared memory between victim
and attacker. However, with SMTCache, sibling slices do not respond to
requests for unmodified data (see Figure 8.3 middle). Thus, neither Flush+
Reload nor Flush+Flush on unmodified data are possible on SMTCache.

Cache side channels on writeable shared memory are still possible. However,
this is a special case that was not handled by prior work on secure last-
level caches either, as writeable shared memory already requires trust
between victim and attacker for these shared memory regions. Hence, we
also conclude that given the lack of a plausible threat model it is no case
that SMTCache should cover.

6 Performance Evaluation

As gem5 lacks SMT support, we cannot use it to test SMTCache perfor-
mance, as its benefits only materialize with SMT. Instead, we evaluate
performance in CacheSim [4] and on an Intel CPU, both with SMT, using
the SPEC benchmark. We evaluate real-world single-threaded and SMT

192

6 Performance Evaluation

ex
ch
g2

p
op

2
im

ag
ic
k

fo
to
n
ik

lb
m

ro
m

ca
ct
u

x
26
4

le
el
a

d
ee
p

n
ab

p
er
l

x
z

m
cf

om
n
et

x
al
an

c
b
w
av
es

1

2
H
R

∆
to

32
k
B

[p
p
.]

Ours 64kB
128kB

(a) SMT = 2, slices = 3, streams = 2

ex
ch
g2

p
op

2
im

ag
ic
k

lb
m

fo
to
n
ik

ro
m

ca
ct
u

x
26
4

le
el
a

d
ee
p

n
ab

p
er
l

x
z

m
cf

om
n
et

x
al
an

c
b
w
av
es

1

2

H
R

∆
to

32
k
B

[p
p
.]

Ours 64kB
128kB

(b) SMT = 2, slices = 3, streams = 4

lb
m

im
ag
ic
k

ca
ct
u

p
op

2
ex
ch
an

ge
2

x
26
4

le
el
a x
z

fo
to
n
ik

ro
m

n
ab

d
ee
p
sj
en
g

m
cf

p
er
l

x
al
an

c
om

n
et
p
p

b
w
av
es

0

5

10

H
R

∆
to

32
k
B

[p
p
.]

Ours 64kB
128kB

(c) SMT = 4, slices = 5, streams = 4

lb
m

im
ag
ic
k

ca
ct
u

p
op

2
ex
ch
an

ge
2

x
26
4

le
el
a x
z

fo
to
n
ik

ro
m

n
ab

d
ee
p
sj
en
g

p
er
l

m
cf

x
al
an

c
om

n
et
p
p

b
w
av
es

2
4
6
8

H
R

∆
to

32
k
B

[p
p
.]

Ours 64kB
128kB

(d) SMT = 4, slices = 5, streams = 6

Figure 8.4: Average simulator hit ratios over SPEC-speed 2017 benchmark combi-
nations of different L1D cache configurations compared to a standard
32KiB cache. Each datapoint represents the average hitrate of that
benchmark measured in all combinations with other benchmarks.
Base hit ratios are around 90-99%. Benchmarks sorted by ascending
SMTCache hit ratio.

switching behaviour on Linux server workloads over several hours, result-
ing in data for SMTCache performance estimates for different numbers of
slices.

6.1 CacheSim Hit Ratio Simulation

We use CacheSim [4] to evaluate hit ratios in SMTCache in different SMT
configurations and two levels of cache. Like prior work [3, 25, 52], we use
a representative sample of 250 million instructions from SPECspeed CPU
2017 benchmarks. We use a standard 8way, 32KiB L1 instruction cache,
combined with the different L1 data caches we evaluate.

193

8 Fast and Efficient Secure L1 Caches for SMT

SMT workloads are simulated by interleaving memory accesses of the
currently active workloads. We test all 153 pairwise combinations (with
repetition) of 17 SPEC workloads. To fill up to 8 SMT threads, we use
multiples of the pairs to create up to 8 workload streams and avoid an
explosion of simulation time. We shift the recorded addresses of streams
such that no two workloads share memory addresses. To simulate context
switches by the operating system, threads change their workload in regular
intervals of 3 000 000 accesses, which roughly equals 500Hz on a 3GHz
machine, assuming 2 memory accesses per cycle. Between each switch, the
implementation of SMTCache briefly loads a fictitious kernel domain. In
addition to context switches, we also add the option to simulate a number
of syscalls in every context switch interval, e.g., 5 syscalls for every context
switch. A syscall here is simulated simply by loading the kernel domain
and switching back to the last workload.

We examine the hit ratio of these combinations in Figures 8.4 to 8.5.
In Figure 8.4, we plot the averages for each benchmark combination.
We simulate configurations where the number of workloads is equal or
higher than the number of slices. This shows an ideal and non-ideal
case for SMTCache. SMTCache performs about on par with a standard
cache of equivalent size to the maximum active number of slices, i.e.,
the number of SMT ways. We only see a significant deviation for the
benchmark combinations that include bwaves (and, to a minor extent,
xz), as this workload seems to use a particularly large working set. The
example of bwaves also demonstrates the thrashing resistance of SMT
Cache, as thrashing can only spill over to the second thread via evictions
caused by inclusivity in higher caches. The combination of 2 bwaves
workloads (Figure 8.4a) produces a 1.73 pp higher hit ratio on SMTCache
than a standard cache on SMT-2 with 3 slices, compared to 1.98 pp for
the 128KiB standard cache with twice the concurrently available cache
memory. This becomes even more pronounced for SMT-4 (Figure 8.4c)
with hit ratio increases of 12.78 pp vs 2.64 pp for SMTCache (5 slices) vs.
a 128KiB cache.

Figure 8.5 reinforces the result that thrashing resistance becomes increas-
ingly more pronounced with more logical cores. In this graph, the size of
SMTCache increases with the number of SMT ways. While SMTCache
starts with hit ratios very similar to the standard cache with the corre-
sponding size, we can see that the hit ratio of standard caches quickly
drop as the 8 workloads start to interfere more and more, while SMT
Cache remains somewhat static.

194

6 Performance Evaluation

1 2 4 8

88

90

92

94

n-way SMT

L
1
D

h
it

ra
ti
o
[%

]
Ours
32kB
64kB
128kB

Figure 8.5: Mean simulator hit ratio
over SPEC combinations
for different number of
slices with standard de-
signs for reference. 1,2,4,8-
way SMT. 8 workloads.
n = nSMT + 1 for SMT
Cache.

2 3 4 5

93.5

94

94.5

slices

L
1
D

h
it

ra
ti
o
[%

]

Ours, 0 Ours, 1
Ours, 5 Ours, 10
32kB 64kB
128kB

Figure 8.6: Mean simulator hit ratio
over SPEC combinations
for different number of
slices with different num-
bers of syscalls per con-
text switch. Standard de-
signs for reference. SMT-2,
6 workloads.

As Figure 8.6 shows, the increase in hit ratio for each extra slice beyond
SMT +1 is fairly small, compared to the benefit from increasing the effec-
tive cache size. This coincides with our observations in other benchmarks
(cf. Section 6.2) that returning to an empty cache is not a significant cost
when the uninterrupted runtime is significantly larger than the time it
takes to refill the cache. The overhead of the full-flush mitigation is mostly
small, but some applications see a significant loss in performance [28]. In
our tests, when we add a number of simulated syscalls per context switch
similar to what we find in Section 6.2, we see that the gap from 2 to 3
slices grows slightly. Specifically, this occurs when the number of slices
is not higher than the number of SMT ways, as then each syscall results
in a full cache eviction. For example, in the depicted configuration with
2 slices, 6 workloads and SMT-2, we see the average hit ratio drop from
94.16 pp to 93.50 pp when we increase number of syscalls per context
switch from 0 to 10. Therefore, the number of slices in our proposed default
configuration of SMTCache is the number of SMT ways + 1. This ensures
that applications always return to a full cache from a syscall.

6.2 Server Context-Switch Evaluation

We analyze real-world switching behavior with SMT-2 by running several
server workloads in different configurations on a native Linux system
and simulate the impact of our design. We use the applications proposed

195

8 Fast and Efficient Secure L1 Caches for SMT

Measured 2 3 4 5 6

92

94

96

slices

L
1
D

h
it

ra
ti
o
[%

]
App DB
File Mail

Stream Web

Figure 8.7: Measured hit ratios from conventional cache architecture compared
to expected hit ratios for different numbers of slices in SMTCache.
SMT-2.

by prior work ([38, 53]) to evaluate the performance of SMTCache in a
realistic cloud scenario. These benchmarks include the following server
applications combined in pairs of two to form our server workloads: Apache
Tomcat (application server), MySQL (DB server), Postfix (mail server),
Samba (file server), FFserver (streaming), and Apache (http server). We
run all experiments on an Intel i7-6700K CPU with 4 cores and SMT. We
isolate one physical core to eliminate interference from unrelated tasks
and execute the workloads on the two SMT cores.

We modify a Linux v5.13 Kernel to record all context switches and syscalls
with tracepoints in the context switch and do syscall 64 functions. In
addition to information about the current and next process, we also record
L1D performance counters of hit ratios for all applications. The context
switching and syscall information now lets us simulate LRU replacement
for varying numbers of slices for each application in different workload
combinations. The EER indicates how often a process receives a cleared
cache upon being scheduled. A higher number of slices results in a lower
EER. With the performance counters, we create two L1 cache hit ratio
baselines for each server application on an isolated core. The first baseline is
standard switching without flushing, yielding the highest possible hit ratio
for each application (HRhigh). For the second baseline, we evict the cache
in every context switch and syscall, producing each application’s lowest
possible hit ratio (HRlow). We assume that the hit ratio decreases linearly
from an EER of 0% (HRhigh) to an EER of 100% (HRlow), that a process
with a dedicated cache performs roughly the same as a process running
on an isolated core, and that kernel threads only interfere minimally on
isolated cores. Based on these assumptions, a process receiving a cleared
cache each time it is scheduled (EER 100%) has the hit ratio of the process

196

6 Performance Evaluation

Table 8.2: Comparison of measured syscall and scheduling metrics.

App DB File Mail Stream Web

Syscalls per scheduled period 6.86 4.84 10.56 10.98 46.34 4.12
Avg. scheduled period (ms) 0.033 0.088 0.066 0.298 9.843 0.028
Avg. time to context switch or syscall (ms) 0.004 0.015 0.006 0.025 0.208 0.005

operating on a dedicated core, where the cache is flushed at every context
switch and syscall (HRlow) and vice versa (EER 0%, HRhigh).

For the evaluation, we record the application’s L1 hit ratios, context
switches, and syscalls in all workload combinations. We use the informa-
tion about context switches and syscalls to compute the EER for each
application and varying numbers of slices. We then use the EER values
to interpolate between the hit ratio baselines. This yields the expected
hit ratios of each application in a SMTCache architecture with different
numbers of slices.

Figure 8.7 shows the expected hit ratios for all workload combinations
with different numbers of slices. The leftmost values represent the mea-
sured hit ratios for each application in all workload combinations in a
conventional cache architecture. The other values are the expected hit
ratios for the respective number of slices in a SMTCache architecture.
The grey lines represent specific workload combinations. The colored lines
show the average hit ratio for each application. Our evaluation shows an
expected performance improvement for SMT workloads when there are
SMT ways + 1 slices compared to the measured value in a conventional
cache architecture. We observe a decrease in performance when using
as many slices as SMT ways in most workload combinations. The cause
for this expected performance decrease roots in syscalls. Since syscalls
constantly refresh the kernel to be the most recently used cache domain,
only one slice is left for parallel tasks. Table 8.2 shows that, on average,
between 4 and 46 syscalls occur during a scheduled period, depending on
the application.

Figure 8.8 depicts each server application’s average expected eviction
ratios in a SMTCache architecture for different numbers of slices. We see
a high eviction ratio when using as many slices as SMT ways. For some
workloads, the computed eviction ratio is almost 100% when using 2 slices
on our machine with 2 SMT ways. Moreover, we see that using more than
SMT ways + 1 slices brings almost no performance improvement, given

197

8 Fast and Efficient Secure L1 Caches for SMT

2 3 4 5 6

0

50

100

slices

App DB File
Mail Stream Web

E
x
p
ec
te
d

E
v
ic
ti
o
n

R
a
ti
o
[%

]

Figure 8.8: Expected eviction ratios computed from context switch and syscall
information for different numbers of slices. SMT-2.

that the eviction ratio is already almost as low as 0% for 3 slices for all
applications.

The average time for a full L1D cache flush in our applications is 3 836 cycles
(2 332 cycles to 10 272 cycles, median 2 401 cycles). We flush the L1D cache
upon every syscall and context switch to record this value. We observe
a higher duration of 10 272 cycles for the stream testcase compared to
the other server applications. The average L1D flush duration correlates
with the average time between syscalls and context switches for each
application. The stream testcase runs uninterrupted for 0.208ms between
syscalls and context switches on average (Table 8.2), allowing a longer
time for data to be written to the L1D cache. As all dirty cache lines are
flushed to higher cache levels, the L1D cache flush duration increases with
the number of writes.

To confirm these L1 flush delays, we also micro-benchmark the full-cache-
flush duration in gem5. The results show 350 writebacks on average taking
an average of 1700 cycles, comparable to our real-world results.

7 Related and Future Work

Many secure cache designs have been proposed to curb these attacks. We
can divide these designs into two groups: designs based on randomization
and on partitioning. The former tries to obscure access patterns by making
them seemingly random to an attacker, while the latter tries to make
accesses unobservable. Many designs require complex functions whose
latency is too large for implementation in an L1 cache or simply target the

198

7 Related and Future Work

LLC because they assume the underlying caches are secured in a different
way. These designs therefore only target the LLC [3, 5, 6, 7, 8, 9, 17, 22,
25, 30, 41].

While prior partition-based designs may be applicable to the L1, they
have so far come at a reduced cache utilization or available cache size.
Only way-based partitioning even has the option to increase cache size,
though as examined in Section 4, may come with increased energy needs.
In this sense, SMTCache achieves an orthogonal goal of offering security
and an increase in the overall L1 size, which is complementary to the
partition-based designs. We anticipate that for a fully secure system
memory subsystem, SMTCache will be combined with one or more of the
secure cache approaches for L2 and L3 caches.

Wang et al. [58] presented PLCache and RPCache. PLCache has the
ability to lock critical cache lines dynamically in the cache. While less
wasteful than static partitioning, the programmer has to mark secrets.
Instead, Random Permutation Cache tries to prevent observable inter-
ference between cache lines of different processes by randomizing their
locations with a permutation table. Both PLCache and RPCache have
low-overhead implementations, though Kong et al. [57] point out security-
related shortcomings of both. Further approaches have been proposed
that offer fine-grained specification of cache partitions, on a cache-line
and cache bank granularity respectively [49, 55]. Still, all these designs are
size-limited, where SMTCache offers an orthogonal approach to increase
the overall L1 size.

Some works explored way-based partitioning [27, 52] similar to Intel
CAT [39, 44] with additional security by disabling cross-domain cache
hits and moderate performance costs. We believe that compared to our
work, these way-split designs could not benefit from power savings in
the way SMTCache does because of the dynamic nature of the designs.
Hybcache [20] proposes selective cache partitioning that incurs only a low
overhead and only for protected code. It does so by combining random
replacement with a small but fully-associative sub-set of the cache for
a trusted execution environment. Jumanji [16] partitions the L3 cache
dynamically by splitting it into software-defined shares. Still, partitioning
reduces the effective cache size, which is unsuitable for the size-limited
L1 cache. Newcache [42] is a pseudo-fully-associative cache with random
replacement, that maps address and domain ID of a load to a possible
random location in the cache, at moderate performance, area, and energy
costs.

199

8 Fast and Efficient Secure L1 Caches for SMT

TEE-SHirT [1] is a design with partitioned L3 caches and private L2
caches, and non-partitioned private L1 caches. To secure the L1 cache,
they simply flush the cache on context switches, which is not overly
expensive, given that refills from L2 and L3 are possible. Ge et al. [21]
estimated the overhead for L1 flushing to be as low as 1% on the L4 kernel.
However, benchmarks on the Linux kernel showed a significantly higher
cost of 10% [28] on commodity CPUs. SMTCache complements TEE-
SHirT from a security perspective while offering better performance than
L1 flushing. Similarly, for MI6 [18], SMTCache offers a better alternative
to simple L1 flushing.

Future Work. Our experiments have shown that while scaling the
number of slices with the number of SMT threads provides a performance
boost very similar to an equivalent increase in cache size, going beyond
has quickly diminishing returns. The impact of context switches and
syscalls, however, shows that an extra domain for the kernel is useful.
An open question for future work is, therefore, if a separate but smaller
slice dedicated to the operating system would be a good tradeoff between
performance and chip area.

To maintain energy consumption on par with current designs, we assumed
the same bandwidth between the core and SMTCache as in standard
caches. SMTCache supports twice that bandwidth for SMT-2. Future
work could investigate dynamic scaling of the amount of issued loads and
stores by the core to optimally fit power budgets and provide increased
performance.

8 Conclusion

We proposed SMTCache, a secure L1D cache increasing cache size and
thrashing resistance while being energy efficient. SMTCache achieves
strong domain isolation, as security critical memory accesses from one
domain are never served from another. With CacheSim and a simulation
based on traces from native Linux benchmarks, we also showed that increas-
ing the cache size with multiple slices provides not only the performance
boost from simply increasing the cache size, but also from preventing
interference between workloads. Lastly, our CACTI power simulation re-
vealed that SMTCache design is significantly more energy-efficient than a
traditional design of comparable size. We conclude that the SMTCache

200

9 Appendix

design shows promising results in terms of security, performance, and
energy efficiency.

Acknowledgments

This research is supported in part by the European Research Coun-
cil (ERC project FSSec 101076409), and the Austrian Science Fund
(FWF SFB project SPyCoDe 10.55776/F85 and FWF project NeRAM
10.55776/I6054). Additional funding was provided by generous gifts from
Intel, Red Hat and Google. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding parties.

9 Appendix

9.1 Implementation of SMTCache in gem5

To demonstrate the functionality of SMTCache we implemented it in
gem5. At the moment, the gem5 simulator does not support simultaneous
multithreading in full system mode. Therefore, we cannot use it to estimate
full system-level performance overheads for SMTCache, as it scales with
simultaneous multithreading. We still modelled the additional latencies
caused by our design realistically, allowing for micro-benchmarks of specific
operations. Our implementation aims to functionally represent the features
of the design described in Section 3, while working within the limitations
of the gem5 codebase.

9.1.1 Implementation Overview

The gem5 framework simulates a freely configurable set of CPU cores,
caches, crossbars (XBar), peripheral devices, etc. connected through ports
on with each other. To avoid a complete overhaul of the memory subsys-
tem, our implementation works within the system as much as possible,
only swapping the default cache configuration with our SMTCache imple-
mentation.

201

8 Fast and Efficient Secure L1 Caches for SMT

Because all the SMTCache L1 slices behave like independent caches, we
can build SMTCache on top of the existing L1 cache implementation.
More specifically, we add functionality to perform a full cache flush (Sec-
tion 9.1.3). In a typical CPU, the gem5 CPU core is directly connected to
a L1 data cache. For SMTCache, we instead add multiple L1 caches and
connect all of them to the CPU core through a custom SMTCache-XBar
that implements the switch, as shown in Figure 8.1. Additionally, this
XBar also simulates the SMTCache coherence behavior. The design of the
XBar is described in detail in Section 9.1.2. The L2 cache in our system is
shared between cores and the point of coherence. Usually gem5 connects
all L1 caches of all cores to the shared L2 cache through the L2XBar. For
SMTCache we do exactly the same, with all L1 data slices of all cores
connected to the L2XBar. Finally, we customize the move-into-control-
register instruction implementation (MOV C R) to inform our custom SMT
Cache-XBar about a CR3 change.

9.1.2 SMTCache-XBar Coherence Controller

The CPU core communicates with its SMTCache-XBar by writing to a
special address, whenever the CR3 register is written. This communication
is necessary to allow the SMTCache-XBar to respond to a switch in the
active domain. The SMTCache-XBar implements the LRU slice eviction
and causes a full flush of all lines in the slice about to be assigned to a
new domain.

Finally, the SMTCache-XBar also simulates the snooping coherence be-
havior. In a real implementation, every memory access would go to the
active L1 slice, which may then forward the request to the controller if it
is a miss. The controller then forwards the request to a slice that contains
the cache line if there is one, or the L2 cache. In our gem5 implementation,
the SMTCache-XBar directly checks all connected L1 slices and forwards
the request to the correct one, if appropriate (i.e., the line is found in
the current slice or is modified in a different slice). By adding the correct
latencies differentiating a cache hit vs a miss in the active L1 slice, our
implementation can simulate the correct overhead. For the tag-matching
in the slices, we budget one extra cycle. With this, we implement the be-
havior of the SMTCache coherence controller without requiring a separate
component.

202

References

9.1.3 Flushing

Whenever a process without an associated slice is scheduled, the least
recently used cache slice must be flushed and write back dirty data into
higher cache levels or the main memory. Because we only have to write
back dirty data, the flush latency is dependent on the number of dirty
cache lines. Intel Skylake and later CPUs have a bandwidth of 1 cache
line per cycle between the L1 and L2 [46]. This gives a lower bound of
512 cycles for a full flush if every single line is dirty. The flushing can take
longer if, e.g., the L2 has to write data into the main memory to make
space for the flushed data from the L1 slice. We implement our cache
flushing to simulate this behavior and latency.

In gem5, caches can tell the CPU that they are blocked for various reasons.
We use this mechanism to block the cache while flushing, as this can take
many clock cycles. The CPU waits for the flushing to be finished, treating
it as a fully serializing operation. This is important to avoid speculative
loads or stores to the wrong slice during this step.

References

[1] Kerem Arikan, Abraham Farrell, Williams Zhang Cen, Jack McMa-
hon, Barry Williams, Yu David Liu, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. TEE-SHirT: Scalable Leakage-Free Cache Hi-
erarchies for TEEs. In: NDSS. 2024 (p. 200).

[2] Intel. Intel Software Guard Extensions (Intel SGX). 2024. url:
https://www.intel.com/content/www/us/en/products/do

cs/accelerator-engines/software-guard-extensions.html

(p. 186).

[3] Lukas Giner, Stefan Steinegger, Antoon Purnal, Maria Eichlseder,
Thomas Unterluggauer, Stefan Mangard, and Daniel Gruss. Scatter
and Split Securely: Defeating Cache Contention and Occupancy
Attacks. In: USENIX Security. 2023 (pp. 181, 185, 193, 199).

[4] Giner, Lukas. CacheSim Cache Simulator. 2023. url: https://gi
thub.com/isec-tugraz/CacheSim (pp. 182, 192, 193).

203

https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/software-guard-extensions.html
https://github.com/isec-tugraz/CacheSim
https://github.com/isec-tugraz/CacheSim

[5] Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-
Reza Sadeghi, and Emmanuel Stapf. Chunked-cache: On-demand
and scalable cache isolation for security architectures. In: NDSS.
2022 (pp. 181, 185, 199).

[6] Daniel Townley, Kerem Arikan, Yu David Liu, Dmitry Pono-
marev, and Oğuz Ergin. Composable Cachelets: Protecting Enclaves
from Cache {Side-Channel} Attacks. In: USENIX Security. 2022,
pp. 2839–2856 (pp. 185, 189, 199).

[7] Thomas Unterluggauer, Austin Harris, Scott Constable, Fangfei
Liu, and Carlos Rozas. Chameleon Cache: Approximating Fully As-
sociative Caches with Random Replacement to Prevent Contention-
Based Cache Attacks. In: SEED. 2022 (pp. 185, 199).

[8] Gururaj Saileshwar, Sanjay Kariyappa, and Moinuddin Qureshi.
Bespoke cache enclaves: Fine-grained and scalable isolation from
cache side-channels via flexible set-partitioning. In: SEED. 2021
(pp. 185, 199).

[9] Gururaj Saileshwar and Moinuddin K. Qureshi. MIRAGE: Mitigat-
ing Conflict-Based Cache Attacks with a Practical Fully-Associative
Design. In: USENIX Security. 2021 (pp. 181, 185, 189, 199).

[10] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. CacheOut: Leaking Data on Intel CPUs
via Cache Evictions. In: S&P. 2021 (p. 180).

[11] Martin Schwarzl, Thomas Schuster, Michael Schwarz, and Daniel
Gruss. Speculative Dereferencing of Registers: Reviving Foreshadow.
In: FC. 2021 (pp. 180, 184, 191).

[12] Andrei Frumusanu. Apple Announces The Apple Silicon M1: Ditch-
ing x86 - What to Expect, Based on A14. Nov. 2020. url: https:
//www.anandtech.com/show/16226/apple-silicon-m1-a14-de

ep-dive (p. 181).

[13] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, Mike Hamburg, and Raoul Strackx. Melt-
down: Reading Kernel Memory from User Space. In: Commununi-
cations of the ACM 63.6 (May 2020) (pp. 180, 191).

204

https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive
https://www.anandtech.com/show/16226/apple-silicon-m1-a14-deep-dive

References

[14] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mo-
hammad Alian, Rico Amslinger, Matteo Andreozzi, Adrià Arme-
jach, Nils Asmussen, Brad Beckmann, Srikant Bharadwaj, Gabe
Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Car-
valho, Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny,
Stephan Diestelhorst, Wendy Elsasser, Carlos Escuin, Marjan Fari-
borz, Amin Farmahini-Farahani, Pouya Fotouhi, Ryan Gambord,
Jayneel Gandhi, Dibakar Gope, Thomas Grass, Anthony Gutierrez,
Bagus Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris,
et al. The gem5 Simulator: Version 20.0+. 2020 (p. 182).

[15] Vijay Nagarajan, Daniel J Sorin, Mark D Hill, and David A Wood.
A primer on memory consistency and cache coherence. Springer
Nature, 2020 (p. 184).

[16] Brian C. Schwedock and Nathan Beckmann. Jumanji: The Case
for Dynamic NUCA in the Datacenter. In: MICRO. 2020 (p. 199).

[17] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. PhantomCache:
Obfuscating Cache Conflicts with Localized Randomization. In:
NDSS. 2020 (pp. 181, 185, 199).

[18] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, and
Srinivas Devadas. MI6: Secure enclaves in a speculative out-of-order
processor. In: MICRO. 2019 (p. 200).

[19] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (pp. 180,
191).

[20] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi.
HybCache: Hybrid side-channel-resilient caches for trusted execu-
tion environments. In: USENIX Security. 2019 (p. 199).

[21] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time
Protection: The Missing OS Abstraction. In: EuroSys. 2019 (p. 200).

[22] Moinuddin K Qureshi. New attacks and defense for encrypted-
address cache. In: ISCA. 2019 (pp. 181, 185, 199).

[23] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 180,
191).

205

[24] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 180,
191).

[25] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache: Thwart-
ing Cache Attacks via Cache Set Randomization. In: USENIX
Security. 2019 (pp. 181, 185, 193, 199).

[26] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories,
not caches: Side channel attacks in a non-inclusive world. In: S&P.
2019 (p. 188).

[27] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas
Devadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In: MICRO. 2018
(p. 199).

[28] Michael Larabel. An Early Look At The L1 Terminal Fault ”L1TF”
Performance Impact On Virtual Machines. 2018. url: https://w
ww.phoronix.com/review/l1tf-early-look (pp. 195, 200).

[29] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security. 2018 (p. 184).

[30] Moinuddin K Qureshi. CEASER: Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping. In: MICRO. 2018
(pp. 185, 199).

[31] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security. 2018 (pp. 180, 184, 191).

[32] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F
Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the Virtual
Memory Abstraction with Transient Out-of-Order Execution. 2018.
url: https://foreshadowattack.eu/ (pp. 180, 191).

206

https://www.phoronix.com/review/l1tf-early-look
https://www.phoronix.com/review/l1tf-early-look
https://foreshadowattack.eu/

References

[33] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: WOOT. 2017
(p. 180).

[34] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. Cache Attacks on Intel SGX. In: EuroSec. 2017 (p. 180).

[35] Zhen Hang Jiang and Yunsi Fei. A novel cache bank timing attack.
In: ICCAD. 2017 (p. 180).

[36] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX amplifies the power of cache attacks. In:
CHES. 2017 (p. 180).

[37] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (p. 192).

[38] Hao Wu, Fangfei Liu, and Ruby B. Lee. Cloud Server Benchmark
Suite for Evaluating New Hardware Architectures. In: IEEE CAL
16.1 (2017), pp. 14–17 (p. 196).

[39] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal,
Chris Gianos, Ronak Singhal, and Ravi Iyer. Cache QoS: From
concept to reality in the Intel Xeon processor E5-2600 v3 product
family. In: HPCA. 2016 (p. 199).

[40] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In: USENIX Security. 2016 (p. 184).

[41] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache
side channel attacks in cloud computing. In: HPCA. 2016 (pp. 185,
199).

[42] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee. Newcache:
Secure Cache Architecture Thwarting Cache Side-Channel Attacks.
In: IEEE Micro 36.5 (2016), pp. 8–16 (p. 199).

[43] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Tem-
plate Attacks: Automating Attacks on Inclusive Last-Level Caches.
In: USENIX Security. 2015 (p. 184).

207

[44] Intel. Improving Real-Time Performance by Utilizing Cache Allo-
cation Technology: Enhancing Performance via Allocation of the
Processor’s Cache. 2015. url: https://www.intel.com/content
/dam/www/public/us/en/documents/white-papers/cache-all

ocation-technology-white-paper.pdf (p. 199).

[45] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks are Practical. In: S&P.
2015 (p. 192).

[46] Julius Mandelblat. Technology Insight: Intel’s Next Generation
Microarchitecture Code Name Skylake. 2015. url: https://en.wi
kichip.org/w/images/8/8f/Technology_Insight_Intel%E2%8

0%99s_Next_Generation_Microarchitecture_Code_Name_Skyl

ake.pdf (p. 203).

[47] Baker Mohammad. Embedded Memory Design for Multi-Core and
Systems on Chip. Vol. 116. Analog Circuits and Signal Processing.
Springer, 2014 (p. 183).

[48] Yuval Yarom and Katrina Falkner. Flush+Reload: a High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack. In: USENIX
Security. 2014 (p. 184).

[49] Nathan Beckmann and Daniel Sanchez. Jigsaw: Scalable software-
defined caches. In: PACT. 2013 (p. 199).

[50] Mutaz Al-Tarawneh. An Investigation of the Impact of Instruction
Cache (I-Cache) Organization on Power-Performance Trade-Offs in
the Design of Scalar Processors. In: European Journal of Scientific
Research 115 (Nov. 2013), pp. 7–26 (pp. 181, 183).

[51] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R
Hower, Tushar Krishna, Somayeh Sardashti, et al. The gem5 sim-
ulator. In: ACM SIGARCH Computer Architecture News (2011)
(p. 182).

[52] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-
Ghazaleh, and Dmitry Ponomarev. Non-Monopolizable Caches:
Low-Complexity Mitigation of Cache Side Channel Attacks. In:
ACM TACO 8.4 (2011) (pp. 193, 199).

[53] Dawei Huang, Deshi Ye, Qinming He, Jianhai Chen, and Kejiang
Ye. Virt-LM: a benchmark for live migration of virtual machine.
In: ACM/SPEC ICPE. 2011 (p. 196).

208

https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/cache-allocation-technology-white-paper.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf

References

[54] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman
P. Jouppi. CACTI-P: Architecture-level modeling for SRAM-based
structures with advanced leakage reduction techniques. In: ICCAD.
2011 (pp. 189, 190).

[55] Daniel Sanchez and Christos Kozyrakis. Vantage: scalable and
efficient fine-grain cache partitioning. In: ISCA. 2011 (p. 199).

[56] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman
P Jouppi. CACTI 6.0: A Tool to Model Large Caches. In: HP
Laboratories 27 (2009), p. 28 (pp. 181, 183, 189, 190).

[57] Jingfei Kong, Onur Acıiçmez, Jean-Pierre Seifert, and Huiyang
Zhou. Deconstructing new cache designs for thwarting software
cache-based side channel attacks. In: CSAW (2008), p. 25 (p. 199).

[58] Zhenghong Wang and Ruby B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In: ACM SIGARCH
Computer Architecture News 35.2 (2007), p. 494 (p. 199).

[59] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: the Case of AES. In: CT-RSA. 2006 (p. 184).

[60] Daniel J. Bernstein. Cache-Timing Attacks on AES. Tech. rep.
2005. url: http://cr.yp.to/antiforgery/cachetiming-20050
414.pdf (p. 184).

209

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf

9
Repurposing Segmentation as a

Practical LVI-NULL Mitigation in
SGX

Publication Data

Lukas Giner, Andreas Kogler, Claudio Canella, Michael Schwarz, and
Daniel Gruss. Repurposing Segmentation as a Practical LVI-NULL Miti-
gation in SGX. In: USENIX Security. 2022

Contributions

Main author.

211

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

Repurposing Segmentation as a Practical
LVI-NULL Mitigation in SGX

Lukas Giner1, Andreas Kogler1, Claudio Canella1, Michael Schwarz2,
and Daniel Gruss1

1Graz University of Technology,
2CISPA Helmholtz Center for Information Security,

Abstract

Load Value Injection (LVI) uses Meltdown-type data flows in Spectre-like
confused-deputy attacks. LVI has been demonstrated in practical attacks
on Intel SGX enclaves, and consequently, mitigations were deployed that
incur tremendous overheads of factor 2 to 19. However, as we discover,
on fixed hardware LVI-NULL leakage is still present. Hence, to mitigate
LVI-NULL in SGX enclaves on LVI-fixed CPUs, the expensive mitigations
would still be necessary.

In this paper, we propose a lightweight mitigation focused on LVI-NULL
in SGX, LVI-NULLify. We systematically analyze and categorize LVI-
NULL variants. Our analysis reveals that previously proposed mitigations
targeting LVI-NULL are not effective. Our novel mitigation addresses this
problem by repurposing segmentation, a fast legacy hardware mechanism
that x86 already uses for every memory operation. LVI-NULLify consists
of a modified SGX-SDK and a compiler extension which put the enclave
in control of LVI-NULL-exploitable memory locations. We evaluate LVI-
NULLify on the LVI-fixed Comet Lake CPU and observe a performance
overhead below 10% for the worst case, which is substantially lower than
previous defenses with a prohibitive overhead of 1220% in the worst case.
We conclude that LVI-NULLify is a practical solution to protect SGX
enclaves against LVI-NULL today.

1 Introduction

Transient-execution attacks, i.e., Meltdown [42], Spectre [24], or Zom-
bieLoad [27], are powerful microarchitectural attacks for leaking sensi-

212

1 Introduction

tive data. These attacks are commonly classified into Spectre-type and
Meltdown-type attacks [20]. Spectre-type attacks [24, 36, 40, 41, 43] exploit
that the transient instructions following a wrongly predicted branch are
not committed but still leave traces in the microarchitectural state.

With Load Value Injection (LVI), Van Bulck et al. [15] presented a new
type of transient-execution attacks related to Meltdown-type attacks.
Meltdown-type attacks trigger a faulting load in the attacker domain to
transiently consume its value, circumventing permission checks. LVI causes
the fault in the victim domain, making the victim transiently consume a
value from the attacker, i.e., LVI transiently injects data into a victim.

Recent processors mitigate Meltdown-type attacks in silicon [6], e.g.,
Comet Lake processors have no known Meltdown-type vulnerability. As
hardware defenses for Meltdown-type attacks in general also mitigate the
corresponding LVI attacks, attackers cannot inject arbitrary data into
the victim domain. However, on several microarchitectures, the hardware
defense, instead of returning a value from the victim domain, only zeroes
out the value [4, 15]. While this prevents data leakage, it can be used
as a side channel to detect whether an address is valid, e.g., to break
KASLR [4]. Even worse, this remains exploitable in an LVI attack variant,
namely LVI-NULL [15]. With LVI-NULL, the attacker can still inject ‘0’
values into the victim domain.

The LVI paper showed the dangers of LVI-NULL in an AES-NI attack,
but the proposed defenses for LVI-NULL have not been thoroughly evalu-
ated [15]. While the software workarounds for LVI also prevent LVI-NULL,
they are costly, and Intel suggests that developers “should determine
the level of software hardening that their environment requires, based
on risk analysis and an evaluation of the performance impacts of mit-
igation” [8]. Potentially, every load instruction can suffer from a fault,
requiring memory fences for such instructions [15]. This also includes
replacing certain instructions, e.g., the return instruction, with sequences
of other instructions [8, 15]. The worst-case overhead for these mitigations
on real-world workloads is between factor 2 and 19 [11, 15]. This raises the
question whether these prohibitively expensive defenses are still required
on processors with hardware mitigations against LVI just to defend against
LVI-NULL.

In this paper, we propose a lightweight mitigation tailored to LVI-NULL
in SGX. Our mitigation, LVI-NULLify, is built on a systematic analysis
of LVI-NULL variants, yielding new insights on the attack building blocks

213

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

of each variant. In particular, we identify that four out of six variants
rely on pointer redirection to the null page. Based on our analysis and
experimental validation, we discover that LVI-NULL mitigations proposed
by Van Bulck et al. [15] are not effective.

The idea of LVI-NULLify is to offset all memory accesses performed
within the SGX enclave relative to the start of the enclave’s memory
region. To implement this property, LVI-NULLify repurposes segmentation.
Segmentation is a fast legacy hardware mechanism on x86 that is used
during address translation for every memory operation. The first part
of LVI-NULLify is a compiler extension, which generates only segment-
relative data loads. Consequently, any ‘0’ injection only loads data from
the start of the enclave’s memory region, which is under full control of the
SGX enclave. The second part of LVI-NULLify is a modified SGX-SDK
that maintains interoperability with the untrusted userspace program.

The security of LVI-NULLify relies on special preparation of the enclave’s
memory region, mitigating transient injection of arbitrary values. LVI-
NULLify marks the first pages in the enclave’s memory region as non-
executable. Transiently executing non-executable memory leads to an
immediate stall, preventing any attack. LVI-NULLify also marks these
pages as non-readable. We empirically validated that this immediately
stalls the load and dependent instructions.

In our evaluation, we show that LVI-NULLify is extremely lightweight,
with runtime overheads below 10% in the worst case. This is substantially
faster than previous defenses against LVI with a prohibitive overhead
of 1220% in the worst case in our tests. The memory overhead of LVI-
NULLify is around 21.5% on the code size due to the generation of
instruction sequences that explicitly use segmentation. We illustrate that
our mitigation is a practical solution to protect SGX enclaves on hardware
vulnerable to LVI-NULL but not LVI.

To summarize, we make the following contributions:

1. We systematically analyze and categorize LVI-NULL variants, revealing
common attack requirements, and insufficiencies of previously proposed
defenses.

2. We propose, LVI-NULLify, a novel lightweight defense against LVI-
NULL in SGX, repurposing segmentation in a peculiar fashion.1

1We open-source LVI-NULLify on github : https://github.com/IAIK/LVI-NULLify/.

214

https://github.com/IAIK/LVI-NULLify/

2 Background

3. We evaluate the security and performance of LVI-NULLify. We demon-
strate that SGX enclaves on the LVI-fixed Comet Lake CPU are only
secure with our defense. We observe a performance overhead below
10%.

Outline. Section 2 provides background. Section 3 details our threat
model. Section 4 systematically analyzes LVI-NULL variants. Section 5
presents the design and implementation of LVI-NULLify. Section 6 evalu-
ates its security and performance. Section 7 discusses limitations. Section 8
concludes.

2 Background

2.1 Transient-Execution Attacks

Transient-execution attacks [20] are a new class of attacks that exploit
so-called transient instructions, i.e., instructions that are executed but
never retired, to leak sensitive data. Kocher et al. [24] introduced the first
sub-class with Spectre, while Lipp et al. [42] introduced the second with
Meltdown. While Spectre attacks exploit control- or data-flow predictions
made by the hardware, Meltdown exploits the deferred permission check
when accessing memory from a different security domain. This deferred
permission check allows the out-of-order execution to encode the normally
inaccessible data in the cache from where the attacker then extracts it.
Subsequent work showed additional variants in both sub-classes [12, 16,
19, 20, 27, 28, 36, 40, 43, 46]. Additional work has summarized the state-
of-the-art of both transient-execution attacks [2, 17, 20] and defenses [3,
20].

2.2 Load Value Injection

Load Value Injection (LVI) turns Meltdown around by exploiting faults in
the victim [15]. Thus, instead of leaking values, LVI injects values into the
transient execution of the faulting victim. For LVI, the attacker prepares
a microarchitectural buffer, e.g., the store buffer or L1, by filling it with
the values that should be injected into the victim. Then, the victim has
to suffer a fault or a microcode assist when fetching data from memory
to transiently use the values injected by the attacker. The execution of
subsequent instructions with the injected value is then exploited to either

215

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

encode secrets in the microarchitecture or hijack the control or data flow.
Similar to Spectre, LVI requires the gadget to be in the victim and has to
additionally induce a fault or assist in the victim.

For unmitigated processors, the state-of-the-art solution for LVI is to
insert lfence instructions after memory loads [8]. These fences ensure
that faulting loads retire before the next instruction, effectively stopping
all variants of LVI. However, this type of software mitigation comes with
a performance penalty between factor 2 and 19 [11, 15].

2.2.1 LVI-NULL

Starting with the Cascade Lake microarchitecture, Intel processors include
in-silicon mitigations against Meltdown, Foreshadow, and MDS attacks,
including LVI [6]. These mitigations prevent non-zero value injections
through all currently known buffers. However, this mitigation only prevents
the attacker from injecting attacker-controlled data. Instead of stalling,
faulting loads still transiently forward ‘0’ to dependent instructions [4, 15].
Hence, by inducing a fault in the victim domain, an attacker injects the
constant value ‘0’ into the transient execution of the victim. This variant
of LVI is called LVI-NULL. Even injecting ‘0’ can be exploited to great
effect, e.g., to transiently inject round keys consisting entirely of ‘0’ into
AES-NI computations [15].

The Comet Lake series represents Intel’s latest SGX-enabled generation
available for both mobile and desktop workstation models that is affected
by LVI-NULL [6]. Ice Lake processors based on the Sunny Cove architecture
appear to be unaffected by LVI-NULL [6].

2.3 Intel SGX

To provide processor-level isolation and attestation for secure enclaves,
Intel developed Software Guard Extensions (SGX) [60]. By design, SGX
assumes that only the processor is trustworthy. Hence, an attacker can
have full control of the operating system while still being within the threat
model.

When a secure enclave is run, it is placed in the virtual address space of an
untrusted user-space process. While the operating system is untrusted, it is
still responsible for maintaining the virtual-to-physical address mappings.

216

2 Background

Naturally, this would make the enclave vulnerable to address remapping
attacks [60]. To prevent these, SGX maintains its own shadow entry in
the Enclave Page Cache Map (EPCM) containing the expected virtual
address and the permission bits (R-W-X) for each valid enclave page. In
case an illegal virtual-to-physical mapping is encountered, an EPCM page
fault is raised.

Although side-channel attacks are not in scope of the SGX threat model,
previous work showed that powerful side-channel attacks can be mounted
against SGX. A root attacker can still mount low-noise side-channel attacks
through the cache [49, 53, 54], page-table accesses [58, 59, 66], interrupt
timing [48], or branch predictors [5, 33, 52]. SGX is also vulnerable to
transient-execution attacks [21, 26, 27, 47] and Intel has released microcode
updates to protect against them [22, 38].

2.4 Virtual Memory and Segmentation

In modern systems, virtual address spaces are used as an abstraction and to
isolate processes. Hence, they are natively supported by the hardware. Each
process works in its own, largely non-overlapping, virtual address space
and cannot unintentionally interfere with the memory of another process.
The used virtual addresses need to be translated to the corresponding
physical addresses using a multi-level page translation table. The location
of the table for the current process is indicated by a dedicated register
and is switched by the operating system upon a context switch.

Another concept besides paging is segmentation. The idea is to have a
set of segments for different uses, e.g., code, data, stack. While older
processors used segmentation to enable the use of more physical memory,
newer ones mainly use it as a protection mechanism.

Segments are configured via segment descriptors that are located in mem-
ory and are then used in conjunction with paging. Each segment descriptor
has a base address and a limit. During the address translation, the CPU
adds the base address to the segmented virtual address, yielding a non-
segmented virtual address. Some instructions use segments implicitly (e.g.,
push and pop with the stack segment), and code fetches are implicitly
performed via the code segment. Data segments can be used explicitly
with memory referencing instructions.

217

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

On modern systems, paging has completely replaced segmentation for vir-
tual address translation. Consequently, processor manufacturers removed
this feature in the 64-bit long mode (IA-32e) for all segments but fs and
gs. All but these two segments are now required to have a base of 0 and
the maximum possible size. The segments fs and gs still support base and
limit as they are broadly used to implement thread local storage for user
threads and core local storage in operating systems. Hence, to use the base
and limit feature of segmentation on 64-bit systems, user-level software
has to use instructions that use fs or gs, and the operating system has
to set up fs or gs with a base and a limit.

2.5 Object Relocations

Relocations are an essential part of the ELF file format [64, 68]. If a
symbol is referenced inside an object file, the linker or the dynamic loader
has to resolve the symbol’s address and replace all the occurrences of this
reference with the real symbol address. The relocation type specifies how
this address should be calculated and which symbol is referenced.

SGX enclaves behave similarly to dynamic libraries and can be loaded
on arbitrary addresses inside the main program’s virtual address space.
Therefore, enclaves and dynamic libraries need a mechanism to adjust
addresses inside the image to point to the desired position in the address
space. The most common way to achieve this is by using relative addressing,
where all the absolute addresses inside the library are calculated over the
instruction pointer. This type of relocation can be resolved during linking
of the dynamic library.

In contrast to relative addressing, dynamic libraries also support absolute
addressing where the dynamic loader resolves the addresses after the base
address where the image is loaded is known. Here, the loader replaces
placeholders inside the dynamic library with the real symbol address.

3 Threat Model

Hardware. For our mitigation, we assume a current or future Intel
processor with SGX that mitigates LVI in hardware but does not prevent
LVI-NULL, such as, e.g., the Comet Lake microarchitecture. We assume
that there are no Meltdown-type transient-execution attacks [26, 27, 42, 47]

218

4 Detailed Investigation of LVI-NULL

that directly leak data from enclaves. Moreover, hardware vulnerabilities
such as Rowhammer [34, 51, 67] or undervolting [9, 13, 25] are out of
scope. We also assume that Spectre-type attacks [20, 21, 24] are either
mitigated in hardware, firmware, or software. Additionally, we assume
hyperthreading to be disabled. The Intel SGX Attestation Service indicates
whether hyperthreading is enabled, so the verifying party can enforce its
status.

Software. We assume a privileged attacker that is explicitly within
the scope of the Intel SGX threat model. For the enclave, we assume
that it is not vulnerable to traditional side-channel attacks, such as cache
attacks [49, 53, 54] or controlled-channel attacks [66]. We assume that
an attacker can start the enclave as often as required and thus rely on
precise execution control, such as single- or zero-stepping [58]. Bugs in the
enclave, e.g., synchronization problems [45, 63], or missing validations on
the ABI or API level [29], are out of scope.

We consider only 64-bit enclaves, since enclaves can be (cf. Section 2.4)
attacked via 32-bit segmentation [35], but not via 64-bit segmentation due
to differences in the behavior.

Takeaway: Our mitigation targets 64-bit SGX enclaves on
CPUs vulnerable to LVI-NULL, but not vulnerable to LVI.

4 Detailed Investigation of LVI-NULL

In this section, we first investigate the prevalence and impact of different
LVI-NULL scenarios, and their applicability to SGX. We then examine
the overhead and efficacy of current and proposed mitigations.

4.1 LVI-NULL Categorization

We distinguish control-flow and data-flow attacks (cf. Figure 9.1).

Control-flow Attacks. In control-flow attacks, the instruction pointer
is transiently redirected in a way that serves the attacker. Again, we
distinguish two cases: direct code redirection (1) to the null page, or
indirect redirection to arbitrary locations (2 and 3) via the null page.
Direct redirection (1) is achieved by faulting the load that reads the

219

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

control flow data flow

data injection

arbitrary, indirect

req. r(w) page 0

5 direct load

mov (mem),%reg

injects null
e.g. faulting aes

- gadget

6 indirect load

mov (mem),%reg
mov (%reg),%reg

injects arbitrary
values
- r(w) page 0

1 direct jump

mov (mem),%reg
call *%reg

execute page 0
e.g. via vtable

- r(w)x page 0
- if non-writeable:
→ gadget

3 transient stack

pop esp
ret

ROP via
stack on page 0

- rw page 0

4 branches

cmp %reg,(mem)
je *offs

change branch
target, special
case: switch
- gadget

example asm
sequence

attack
scenario

requirements

2 indirect jump

mov (mem),%reg
call *(%reg)

run address
at 0, e.g. vtable

- r(w) page 0
- if non-writeable
→ gadget

Figure 9.1: Categorization of LVI-NULL into control-flow and data-flow attacks.
Subcategories list the different attack vectors and example assembly
sequences for each (in AT&T syntax), the attack scenario, and their
requirements.

call target, thus injecting ‘0’ and redirecting code execution to the null
page. In contrast, arbitrary redirection allows code execution anywhere in
memory if the null page is attacker-controlled, e.g., for Intel SGX enclaves
(cf. Section 2.3). It applies to indirect jumps (2), which load their targets
from memory via at least one indirection. Faulting the second to last
load causes the jump target to be loaded from an offset in the null page,
which allows arbitrary redirection. A special case of indirect redirection are
sequences like pop rsp; ret, which load the stack pointer from memory
and then return. This allows an attacker to set up a transient stack (3)
on the null page by faulting the stack pointer load, and perform a well
understood ROP [70, 72] attack from there.

Data-flow Attacks. Data-flow attacks inject data into the victim’s
execution. We distinguish between direct (5) and indirect (6) loads,
which allow the injection of either ‘0’ or arbitrary values. Van Bulck et al.
[15] showed that injecting ‘0’ into the hardware AES-NI key schedule leaks
the full key. A special case are binary branches and switch statements
(4), which can be compiled as jump tables. Here, data-flow manipulation
changes the control flow, but only to the available branches.

Limitations. While LVI-NULL attacks are possible to execute from
user space, several significant limitations apply. First, user-space attackers
cannot manipulate page tables directly. This prevents these attackers
from arbitrarily causing assists or faults on targeted loads. Secondly, most
operating systems do not allow mapping of the null page by default. Both
Linux and Windows require privileged access to map it, limiting the user-
space attack surface to two cases (4 and 5). The exploitability of direct

220

4 Detailed Investigation of LVI-NULL

load ‘0’ injection (5) depends on the targeted algorithm, and is thus best
mitigated by developers themselves. Manipulating regular branches with
‘0’ injections (4) is similar to Spectre variants and can be mitigated the
same way.

4.2 Control-flow Injection

C/C++ compilers, such as GCC and Clang, commonly emit code patterns
containing jump instructions whose target depends on an address or value
loaded from memory. In our analysis, we found 3 categories of such jumps
that are potentially susceptible to LVI-NULL.

Case 1: Virtual Function Calls in C++ (1 and 2) When objects
in C++ call a virtual function, it is not known at compile time which
function is being called. To solve this, each object has its own table
(vtable), which contains the location of its virtual functions. Because the
location of a dynamically allocated object itself (and thus its vtable) is
also not known at compile time, calling a virtual function requires at least
2 loads. This creates 2 possible points of injection. First, the attacker
may inject ‘0’ when the target is read from the vtable. This load may
be generated by an indirect call instruction or a mov before a direct call,
and can transiently redirect execution to the null page (1). Secondly, the
attacker can inject ‘0’ one load earlier, i.e., when the address of the vtable
is read. This causes the null page to act as the vtable, allowing transient
redirection of execution to any location (2). As the offset in the vtable is
known at compile time, it is compiled to an immediate value that cannot
be manipulated by LVI-NULL.

Exploitable in SGX enclaves? Very likely.

Indirect function calls (2) occur frequently and are almost always im-
mediately exploitable, as they allow redirection to any suitable gadget.

Case 2: Global Offset Table (1) Another potentially interesting case
is the global offset table (GOT), which enables programs to use functions
in dynamically linked libraries. Unlike vtables, the GOT is always at a
known location, and so only the call target is loaded. After the initial
dynamic relocation of the symbols in the GOT, this only creates the
potential to transiently redirect execution to address 0x0.

221

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

Exploitable in SGX enclaves? No.

While direct function calls (1) are frequent, they are not exploitable in
SGX.

Case 3: Switch Statements (4) For certain switch cases, compilers
generate a jump table, first loading the variable in question, and then
looking up the corresponding jump target. This only applies to switch
variables loaded from a single memory location, and not derived calcula-
tions. In position-independent code (PIC), this creates 2 attack points:
injecting ‘0’ into the variable itself, or injecting ‘0’ when the jump target
is calculated. The former transiently leads the switch into the ‘0’ case,
executing code there as if the variable were ‘0’. The latter causes the
program to jump into the data section instead, as both GCC and Clang
load offsets relative to the jump table. These offsets are likely not valid
code, and furthermore, as Canella et al. [20] showed, the executable bit
is respected in transient execution, so this injection is not exploitable
here. When compiled as non-relocatable (no-pic), execution can again
be redirected to the first case. Additionally, it can now be redirected to
address 0x0, as the jump table contains absolute addresses, which can be
zeroed on load (1).

Exploitable in SGX enclaves? Unlikely.

Similiar to Spectre-PHT [20], exploitability is highly dependent on the
specific case, but case-0-injections can be prevented reliably (see Sec-
tion 5).

These are the three cases of commonly used code we found to enable
control-flow injection. We expect there are more cases in other code
patterns, compilers, or languages. However, for SGX, LVI-NULLify copes
with all types of control-flow injection, as all control-flow injections rely
on the null page. Table 9.1 explores the prevalence of such gadgets in
standard SGX code.

4.3 Data Injection

Data injection gadgets are simply direct or indirect loads from memory,
and as such, they are ubiquitous in all programs. Van Bulck et al. [15]
have shown that in some cases, even ‘0’ injections can be exploited to great
effect. However, in cases where data injection does not lead to changes
in control flow, it depends entirely on the algorithm at hand whether it

222

4 Detailed Investigation of LVI-NULL

can be exploited. As a direct ‘0’ injection (1) cannot be mitigated by
software changes short of adding a load-serializing instruction after all
potentially problematic loads, we do not consider this case. Instead, we
leave it to the authors of software to guard their critical computations,
such as cryptography, with this possibility in mind. However, in Section 5,
we propose a way to prevent arbitrary data injection via indirect loads
(6).

Exploitable in SGX enclaves? Likely.

The danger of transient data injection depends on the targeted algorithm,
but arbitrary value injection provides high flexibility for exploitation.

4.4 Applying LVI-NULL Variants in SGX

Of the attack vectors presented in Section 4.1 (cf. Figure 9.1), 4 out of 6
require at least read access to the null page. Variants 4 and 6 have no
particular requirements and apply in any case. Most modern operating
systems do not map the null page by default and typically require root
privileges to do so [32]. Since the purpose of SGX enclaves is to protect
against malicious or compromised operating systems, their threat model
currently allows attackers to use the null page as they see fit.

From within an enclave, all memory of the user-space process is available
for reading and writing according to its page-table entries, as it would
be to the process itself. This implies that variants 2 , 3 , and 6 apply
fully if the null page is writable or with limitations, if it is not. Variant
1 , however, requires the null page to be executable. Van Bulck et al.
[15] experimentally found that code outside of enclave memory is not
executable from within an enclave, even during transient execution. This
was later confirmed by Intel [8], and we have reproduced this result as well.
It follows that the only way to execute instructions at address 0x0 is to
load the enclave itself starting at the null page. Since the Intel SDK does
not build enclaves with execute permissions on this page [8], we consider
variant 1 not exploitable in SGX enclaves.

To evaluate the prevalence of assembly sequences that allow LVI-NULL
types 2 and 3 , we search several prebuilt- and SDK-generated binaries
for a limited selection of exploitable assembly patterns. As Table 9.1
shows, indirect calls (2) are plentiful in these binaries, though they are
currently mitigated by lfence instructions. We find that there are even
some gadgets for variant 3 . An especially interesting observation is that

223

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

Gadget/File QE LE PCE PVE trts tsdc tcxx tcmalloc

mov (mem), %reg

mov (%reg), reg

call *reg

216 0 123 216 0 0 0 4

mov (mem), %reg

call *(%reg)
0 45 0 0 0 0 19 3

mov (mem), %rsp 0 2 0 0 1 0 1 0

mov (mem), %reg

mov %reg, %rsp

ret

1 1 1 1 1 0 0 0

mov (mem), %reg1

mov %reg1, %reg2

mov %reg2, %rsp

ret

0 0 0 0 0 0 0 0

pop %reg

mov %reg, %rsp

ret

0 0 0 0 0 0 0 0

Table 9.1: Number of control-flow gadgets found in Intel’s prebuilt (quoting,
launch, provisioning) enclaves and SDK libraries. Search was limited
to instruction sequences with fewer than 10 separating instructions.

the original transient stack gadget, as described by Van Bulck et al. [15], is
still present in unmitigated form in the prebuilt launch enclave for Linux
provided by Intel as of SDK release 2.11.

An analysis of how some code patterns generate vulnerable instruction
sequences is shown in Section 4.2.

Takeaway: 2 , 3 , 4 , 5 , and 6 are all feasible in SGX.

1 is feasible, but mitigated by default.

4.5 Current and Proposed Mitigations

In this section, we discuss the two main types of mitigations against LVI
and LVI-NULL for SGX.

4.5.1 Memory Fences

The officially suggested mitigation against LVI is to stop transient execu-
tion before it can be exploited. Similar to the mitigations for Spectre [39],

224

4 Detailed Investigation of LVI-NULL

Intel also suggests to use memory fences for aborting transient execu-
tion [8]. As it is infeasible to add memory fences manually, these memory
fences are supposed to be emitted by the compiler. With the publication
of LVI [15], Intel has provided 2 levels of mitigation [7, 8], and Google
engineer Zola Bridges another [1, 10]:

Control-Flow Mitigation. This mitigation replaces ret, call, and
jmp instructions by fenced alternatives. It protects transient control-flow
redirection at the cost of effectively disabling all control-flow predictors.
However, it does not generally protect against value injection and only
prevents these special cases. Compilation options: -mlvi-cfi

SESES. “Speculative Execution Side Effect Suppression” aims to pre-
vent more than just LVI by adding an lfence instruction before every
instruction that operates on memory. This approach fully mitigates LVI,
LVI-NULL, and other transient execution attacks. Compilation options:
-mseses

Optimized Cut. In addition to CFI, this mitigation for LVI (which
we call “optimized cut”) tries to separate loads from potential transmit
gadgets by analyzing the control-flow graph of applications. Hence, the
compiler can insert far fewer lfence instructions than SESES while still
providing the same security guarantees w.r.t. LVI. Compilation options:
-mlvi-hardening -mllvm -x86-lvi-load-opt-plugin=

OptimizeCut.so -x86-experimental-lvi-inline-asm-hardening

While these three levels of mitigation differ in the amount of lfence

instructions (cf. Table 9.2), they all incur heavy performance penalties in
the range of factor 2 to 19 [11, 15].

4.5.2 Page Table Protections

Van Bulck et al. [15] also proposed specific mitigations for LVI-NULL. To
prevent execution of the null page (1), they suggest marking the first
page in an enclave as non-executable or placing an infinite loop at the
base of the enclave image.

As described in Section 4.4, marking a page non-executable indeed prevents
execution in the transient domain. Experiments on our i5-10210U show
that this holds even if the OS marks a page as executable after loading
the enclave. Read, write, and execute permissions are also stored with
the expected virtual address in the protected Enclave Page Cache Map

225

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

(EPCM) entries. Our experiments suggest that in transient execution, the
CPU considers the permission bits of both the page table and the EPCM
and applies whichever is less permissive. As this prevents 1 , an infinite
loop or similar is not necessary.

To stop transient null pointer dereferences (2 , 3 , and 6), Van Bulck et al.
[15] suggest marking the null page as uncacheable. This has also been
proposed as a possible mitigation for Spectre attacks [14], as uncachable
memory cannot be read during transient execution. Any transient access
to uncachable memory simply stalls [14]. While this would indeed prevent
loads from this page, the OS can simply change these flags at any time, as
they are not protected by SGX. We verified that in contrast to the read,
write, and execute permissions, the memory type is not enforced by SGX
and can be manipulated to mount an attack. Additionally, injection via
the shared line-fill buffer is possible on some architectures [12, 14, 26, 27]
if hyperthreading is enabled.

Takeaway: Current mitigations are too costly or are insufficient.

All LVI-NULL variants are preventable by LVI mitigations, but incur
substantial performance degradation. Other proposed mitigations are
only partially effective.

5 LVI-NULLify

Previous mitigations have been designed primarily for LVI, not LVI-NULL.
Hence, they mitigate attacks that are already mitigated more efficiently
in current and future Intel processors, e.g., the recent Comet Lake mi-
croarchitecture. Following the analysis of Section 4.5, we can see that
these previous mitigations either have a substantial performance overhead
or are limited to only certain variants of LVI-NULL. This motivates the
need for a defense that is more tailored to LVI-NULL. In this section, we
present LVI-NULLify, our mitigation for LVI-NULL affected hardware
that achieves a better balance between performance cost and remaining
attack surface than previous LVI mitigations. The worst-case overhead
on our LVI mitigated Comet Lake is only ≈ 9%, our older LVI-vulnerable
Coffee Lake-R reaches a maximum of 36% overhead.

226

5 LVI-NULLify

non-enclave memory enclave image

enclave start enclave endGS-base0

unreadable pages

Figure 9.2: Memory layout of enclaves protected with LVI-NULLify.

5.1 LVI-NULLify Design

LVI-NULLify aims to prevent all LVI-NULL variants in our threat model
(see Section 3). This includes variants 1 , 2 , 3 , and 6 . Though we cate-
gorize switch expressions as a subclass of branches (4) in Section 4.1, we
briefly describe a mitigation in Section 5.1.4 that is also applicable outside
of SGX. Since all other variants involve the null page, the central feature
of LVI-NULLify must be to control either its contents or accessibility.
Therefore, we devise a way to effectively move the LVI-NULL target page
into the enclave, even if address 0x0 is not in the enclave’s linear address
space.

SGX does not currently offer any control over pages outside of the enclave
memory range. Hence, loading an enclave anywhere but page null means
giving up control of the null page. As multiple enclaves can and often
need to be loaded simultaneously, only loading an enclave if it is mapped
at address 0x0 is not a practical option. Our solution is to offset every
memory load in the enclave such that any pointers that are loaded from
memory are added to an immutable constant. For this constant, we use the
virtual base address of the enclave image. The resulting memory layout
is shown in Figure 9.2. Even if an address load faults and transiently
returns ‘0’, the resulting load address is still within the enclave. This puts
the control over the pages targeted by LVI-NULL into the hands of the
enclave, regardless of where an attacker maps it.

5.1.1 Using Segmentation

To offset loads on commodity Intel CPUs, we rely on segmentation. In
64-bit mode, segments typically have to start at address 0x0. However,
the GS and FS segment registers are an exception and can have non-
zero base addresses. Conveniently, the EENTER and ERESUME instructions
automatically set these base addresses to the enclave base address plus

227

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

a developer-controlled, positive offset. As the GS and FS registers are
set on each entry, and the offsets are stored in enclave memory in the
thread control structures (TCS), these values are inaccessible to the OS.
They are also part of the enclave’s attestation, preventing manipulation
at load time. The Intel SGX-SDK sets both registers to the same value,
creating an unnecessary redundancy. We can thus repurpose one of the
two segment registers, in our case GS, for LVI-NULLify.

Since address calculation with segment bases is an integral part of x86
hardware, there is no noticeable slowdown for GS-relative loads, as we
experimentally verify in Section 6. We set the GS base to the beginning
of the enclave, such that data loads in our enclave are now relative to
the beginning of the enclave. This means that we essentially build a non-
relocatable object (no-pic) that gains its position independence by adding
GS base to all addresses.

Applying this mitigation to generic SGX enclaves requires the modification
of 3 components: the compiler, the Intel SGX-SDK, and the Intel Platform
Software (PSW). The compiler has to emit GS-relative loads for all
memory-load instructions. We discuss how this is implemented in LLVM
in Section 5.2. Section 5.3 then details the custom relocations that are
necessary after compilation. Changing all load instructions also implies that
all addresses inside the enclave are invalid outside and vice versa. Hence,
this necessitates an automatic pointer conversion from the trusted runtime
system (tRTS) to the untrusted runtime system (uRTS). Additionally, the
tRTS itself needs to be built with our compiler modification. We detail
the necessary modifications to the SDK in Section 5.3.2. As the GS offset
is in part calculated by the PSW, we need to enable it to distinguish
between enclaves mitigated by LVI-NULLify and unmitigated enclaves.
The changes to the PSW are also described in Section 5.3.2.

5.1.2 First Enclave Pages

With GS-relative addressing, most transiently faulting indirect loads read
from the first page of the enclave. For this reason, it is critical that reading
from it does not return values that can be used in an attack. To prevent
variant 1 of LVI-NULL, which requires code execution, simply making
this page non-executable is sufficient. Additionally, marking the first page
non-readable in the EPCM entry prevents all variants that load from this
page (2 , 3 , and 6). Transient accesses to such pages simply stall, as we

228

5 LVI-NULLify

have experimentally confirmed on several CPUs, including our i5-10210U
Comet Lake. This stops all further dependent accesses. However, the first
page in an enclave may contain data that the dynamic loader inside the
enclave needs to access. We, therefore, shift the enclave image and prepend
empty pages that are neither readable nor executable. The amount of
such pages that are needed depends on the enclave program; loads with
offsets, where the base address can be zeroed, may transiently load more
than 1 page from the GS base address or even below it. Negative offsets
could, therefore, lead to loads that escape the enclave. Fortunately, the
size of all immediate offsets is known at compile time. We can determine
a safe amount of empty pages to map before and after the GS base after
compilation. An example with 2 pages on each side of the GS base address
is shown in Figure 9.2.

The residual attack surface to this approach are dynamic arrays. When
neither position nor size are known at compile time, loads can take the
form base + offset, where both base and offset are loaded from memory.
If an attacker faults the base, the transient load target is potentially
anywhere from the enclave beginning up to the size of the dynamically
allocated structure.

5.1.3 Alternative Approaches

There are other, less peculiar mechanisms to prevent faulting loads from
reaching the null page. We want to examine two candidates here, as their
shortcomings are not immediately apparent.

First, we could simply add the base address to all loads by converting
every load to use complex addressing. For this, we cannot load the base
address from memory, as this load could again be zeroed. A solution would
be to always keep the base address in a CPU register, but this reduces the
number of registers available to the compiler. This can incur significant
performance impacts as less efficient code can be generated. Alternatively,
we could use memory fences for these loads, which would again result
in large performance overheads. Additionally, any load that already uses
complex-addressing needs an additional offset computation beforehand.

The second approach would be to employ immediate addresses by using the
dynamic loader to relocate all symbols. An undesirable side effect of this
method is the need to set the text section of the enclave to writable and
executable. As enclave pages cannot currently change access permissions

229

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

at runtime, this would weaken the enclave’s protection against traditional
exploits that might otherwise not be exploitable. As x64 does not generally
support 64-bit displacement in complex addressing [62], this is also not
a possibility. Only AL, AX, EAX, and RAX may be the source or target of
immediate 64bit-addressed memory loads, which introduces the need for
more intermediary registers [23].

5.1.4 Mitigating Switch Statements

Regular branches (4) can be mitigated with Spectre-PHT mitigations,
e.g., speculative load hardening. Switch statements present a special case
of branches. On processors with hardware mitigations for branch target
injection, e.g., single thread indirect branch predictors (STIBP) [37], such
as the Comet Lake series, switch statements are protected from cross-
hyperthread manipulation through the branch target buffer. However,
they are still vulnerable to LVI-NULL when the compiler generates a jump
table (see Section 4.2, case 3). We can mitigate the case of single-variable
conditions (conditions that only depend on one in-memory variable) by
targeted insertion of lfence instructions. This is described in more detail
in Section 5.2. It is the only variant we mitigate that can also be exploited
outside of SGX, and this mitigation can also be applied alone.

5.2 Compiler Changes

We developed an open-source implementation of the compiler-part of
LVI-NULLify that is based on the LLVM compiler framework [71]. It
handles the insertion of fences in switch statements (cf. Section 4.2) and
ensures that every load is relative to the GS segment (cf. Section 5).
Our modification consists of two new passes, one module pass (i.e., a
transformation pass) that works on the LLVM intermediate representation
(IR) and one machine function pass in the x86 backend. The mitigation
for switches is purely done in the pass on the IR, while the GS-relative
addressing is implemented in the backend pass. For our modification, we
added 1 024 lines of code to the LLVM code base (24 in 10 existing files,
1 000 in 3 new files).

Switches. When compiling an application with optimizations enabled,
LLVM already tries to optimize the performance of switches [65, 69]. These
optimizations are implemented as a transformation pass that iterates over

230

5 LVI-NULLify

all functions in the translation unit. If a switch is encountered, the pass
tries to apply these optimizations. Unfortunately, this transformation
pass is only executed when the application is compiled with at least
optimization level 1. Hence, we cannot use it and need to implement a
new pass.

We extend LLVM with a new module pass (-flvi-null) that iterates over all
functions in the translation unit and searches for a switch within the basic
blocks that comprise the function. If such a switch is found, the mitigation
is applied. If the switch already contains a ‘0’ case, the compiler simply
modifies the case such that the first instruction within the basic block is
a fence instruction. Otherwise, LVI-NULL falls back to the default case
of the switch. Either one can lead to exploitable behavior. To prevent
this, the compiler inserts a new ‘0’ case that contains a fence instruction
and then performs an unconditional branch to the default case. This new
‘0’ case is only ever executed if the default case is supposed to handle
zero values, or if an attack takes place. This significantly reduces the
performance impact.

By considering these two cases, the compiler part of LVI-NULLify can
mitigate LVI-NULL targeting switches. This mitigation is not specific to
SGX and does not require segmentation, hence this can also be used in
non-enclave applications. While this mitigation on its own is not sufficient
to fully prevent LVI-NULL, as it only mitigates a subset of variant 4 , it
is a necessary building block for LVI-NULLify.

GS-Relative Addressing of Loads. As discussed in Section 5, every
load, explicit or implicit, has to be relative to the GS segment. Thus, in
case of an LVI-NULL attack, the control flow is re-directed to a location
that is controlled by the SGX enclave. To achieve this, we add a new
machine function pass in the x86 backend of LLVM.

In the machine function pass, we iterate over each instruction of a given
machine function, and replace explicit loads, implicit loads from pushing
to and popping from the stack, as well as calls, jumps and returns, as
all of these loads are also exploitable by LVI-NULL (1 , 2 , 3 , and 6).
Hence, the transformation pass replaces each such instruction with an
equivalent sequence of instructions that use GS-relative addressing where
necessary. Figure 9.3 shows some cases that we consider for implicit loads
and how our modified compiler mitigates them.

As jump and call instructions cannot use the GS segment, and the CS
segment cannot be changed (see Section 2.4), we manually convert the

231

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

push %rbp

callq 400480 <func>

pop %rbp

retq

call *16(%r12,%r13,8)

(a) unmodified

sub $0x8,%rsp
mov %rbp,%gs:(%rsp)

lea $return_address(%rip),%r11
sub $0x8,%rsp
mov %r11,%gs:(%rsp)

jmpq 400480 <func>

mov %gs:(%rsp),%rbp

add $0x8,%rsp
mov %gs:(%rsp),%rcx

add $0x8,%rsp
jmpq *%rcx

lea __ImageBase(%rip),%r11

add %gs:16(%r12,%r13,8),%r11

sub $0x8,%rsp
mov %r11,%gs:(%rsp)

lea $return_address(%rip),%r11
xchg %r11,%gs:(%rsp)

jmp *%r11

(b) modified

Figure 9.3: Figure 9.3a shows the unmodified assembly instructions containing
implicit loads while Figure 9.3b shows the instruction sequence with
which they get replaced by our modified compiler.

relative call address of, e.g., an indirect call, to an absolute address by
adding the image base. To protect this pointer conversion from LVI-NULL,
we use a rip-relative lea instruction to calculate the image base instead of
loading the address from memory. Hence, we ensure that all pointers inside
the enclave are relative to GS regardless of their data representation.

As our pass is run as the last pass before the actual code is emitted, no
additional load can appear that is not GS-relatively addressed. With these
compiler modifications, and in combination with the further LVI-NULLify
components, we successfully mitigate LVI-NULL, as we show in Section 6.

5.3 Relocation and SGX-SDK Changes

In addition to the compiler changes (cf. Section 5.2), we require additional
changes in the relocations of the object files (cf. Section 2.5) and changes
in the SGX-SDK and SGX-PSW to realize the GS-relative addressing. We
discuss these changes in this section.

232

5 LVI-NULLify

5.3.1 Relocation Types

The generated instructions from our compiler pass do not use the instruc-
tion pointer for relative addressing, and therefore, the compiler emits
absolute relocations. Since the enclave image is signed by the author of
the enclave and the signature is verified during the enclave initialization,
absolute address relocations cannot be resolved before verifying the signa-
ture [60]. Additionally, enclave memory cannot be modified from outside,
so each enclave contains an ELF loader to resolve any relocations during
the initialization phase. A disadvantage of this is that the page flags cannot
be changed after the enclave is instantiated. Therefore, pages containing
absolute relocations must remain writable at runtime, even if they contain
text sections. Pages that are writable and executable are a traditional
security concern. While the enclave signer issues an error message if it finds
such text absolute relocations, this error can be suppressed. Therefore,
keeping the original page flags without making pages writable is a design
goal of LVI-NULLify.

Since we do not need absolute address relocations when using the GS seg-
ment to specify the image base, we fully replace these absolute relocations.
We build an additional tool to change the relocation types directly in the
object files after compilation. LVI-NULLify does not enforce additional
requirements on the build environment by reusing the existing relocation
types instead of implementing a new one for GS-relative addressing.

The compiler extension emits R X86 64 x absolute relocations as part of
the code generation. We then iterate over the generated ELF object file
and exchange these absolute relocations with the R X86 64 COPY relocation
type. The copy relocation type fills in the relocation destination with the
symbol’s offset from the image base, exactly what is needed for the GS-
relative addressing. The copy relocation’s addend is set to the difference
between the GS-base and the real enclave base to implement the additional
pages in front of the enclave (see Section 5.1.2 and Figure 9.2), i.e., shifting
the address of the relocated symbol.

5.3.2 SGX-SDK and SGX-PSW

For LVI-NULLify to work, some changes to the SGX-SDK and the SGX-
PSW are required. The changes detailed here are made mostly to the

233

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

enclave-loading mechanism and for automated pointer conversion between
enclave and host application.

SGX-PSW. The SGX-PSW is used globally for loading all enclaves. For
LVI-NULLify, the PSW has to set the GS segment in the thread-control-
structure template (see Section 5.1.1). This template is used for creating
threads inside the enclave, and is used for the attestation process. Hence,
the same changes are also required in the SGX signer. We ensure backward
compatibility with enclaves that are not protected by LVI-NULLify by
indicating the use of LVI-NULLify in the enclave signature structure.
Hence, the PSW only modifies the GS segment if LVI-NULLify was used
for building the enclave.

SGX-SDK. Most changes in the SDK affect the ECALL and OCALL
interface. With LVI-NULLify, the enclave and the host application basically
operate in different virtual address spaces. Hence, the ECALL and OCALL
interface have to apply pointer conversion. On enclave entry, the GS
segment is automatically set by the ENCLU instruction. We modify the
enclave entry function to convert the stack pointer, the base pointer,
and the pointer to the structure used to pass additional data into the
enclave. Some minor changes also adapt the elf loader inside the enclave
for GS-relative addressing, as some of the supported relocation types refer
to the absolute enclave base.

In the SGX-SDK, the edger8r application is responsible for parsing the
enclave interface definition file and generating the trusted and untrusted
part of the enclave interface. To ensure the enclave can use pointers
passed to an ECALL implementation without manual modification of the
code, we modified the edger8r application for the code generation of the
trusted enclave API. As this parser already has all the information about
functions and their parameter types, it can automatically generate code
for converting pointers from absolute pointer addresses to GS-relative
addresses. Thus, all the default cases of passing pointers into an ECALL
or OCALL are handled automatically.

The enclave definition language also allows the definition of data structures
for ECALLs and OCALLs. These structures can be automatically copied
into the enclave memory, but nested structures or structures containing
additional data over pointers must be copied by hand from the enclave
developer [61]. Hence, we also leave pointer conversion for such data types
to the enclave developer.

234

6 Evaluation

6 Evaluation

6.1 Security Evaluation

For the security evaluation, we first perform a theoretical analysis of all
variants in the context of our mitigation. Additionally, we also evaluate
our own proofs of concept demonstrating LVI-NULL (see Section 9.3).
All experiments are run on an Intel Core i5-10210U Comet Lake that
is vulnerable to LVI-NULL but not to LVI. In all of our experiments,
LVI-NULLify successfully prevents all targeted variants of LVI-NULL.

Variant 1 , direct jumps. If the target of a jump instruction, such as
call or jmp, is loaded from memory, it can be zeroed using LVI-NULL.
As a result, transient execution continues at address 0x0, which is either
outside the enclave, and therefore not executable in the context of SGX,
or on the first page of the enclave, which is also not executable as ensured
by the SDK. This behavior stays the same with LVI-NULLify, and is thus
not exploitable.

Variant 2 , indirect jumps. When the first of the two loads in an
indirect jump is zeroed, the jump target is read from address 0x0, plus
potentially an offset used in the indirect-jump instruction. This is, e.g.,
the case for an entry in a vtable (cf. Section 4.2). Without LVI-NULLify,
this address points to the virtual address 0x0+offset. This address can be
outside of the enclave and thus under attacker control.

With LVI-NULLify, the load is performed with GS base, which ensures
that the address is inside the enclave. As a number of pages (that depend
on the largest such offset in the enclave) directly after GS base are non-
readable, the address load stalls, and no jump occurs. Since function
offsets can generally be determined at compile time, the required number
of buffer pages can be reported by the compiler. An example would be
finding the maximum number of entries in a vtable. This does not consider
programs that use ‘manually’ constructed jump tables. While in rare cases,
a dynamic offset could be large enough to reach beyond the allocated
buffer pages, e.g., when manually constructing dynamic jump tables, most
cases are prevented, and the remaining rely on very specific circumstances.
Hence, we consider this variant mitigated.

Variant 3 , transient stack. As shown by Van Bulck et al. [15], function
epilogues that load the value of the stack pointer from memory and
return can be exploited to transiently use the null page as the stack by

235

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

zeroing the load. This attack allows for arbitrary code redirection using
transient return-oriented programming. LVI-NULLify replaces the return
instruction (ret) with a GS-relative load and jump (cf. Figure 9.3). As
a result, mounting an LVI-NULL attack moves the transient stack to a
non-readable page within the enclave. This prevents the transient stack
attack, as long as the enclave developer does not actively try to circumvent
that, e.g., by loading the stack pointer with an indirect load instruction
using a very large offset.

Variant 2b , branches. For regular branches, LVI-NULL behaves
very similar to Spectre-PHT and are thus out of scope for LVI-NULLify.
Developers can mitigate them with speculative load hardening if they
choose. As discussed in Section 4.1, switch constructs represent a special
case of branches, as they can be implemented as a jump table. Without
mitigations, execution can be redirected to case ‘0’, which may also be the
default case. LVI-NULLify places an lfence instruction in the affected
case, thereby mitigating it. As the deciding variable may depend on more
than one memory load, we consider this variant only partially mitigated.

Variant 5 , direct load. All data loads are still susceptible to direct
‘0’ injection with our mitigation. Thus, an attacker can use LVI-NULL
for data-only attacks, e.g., as shown for AES-NI [15]. Since exploitability
highly depends on the victim algorithm, mitigation is left to the enclave
developer. Cryptographic libraries need to consider different side channels
in their implementation already. Variant 5 becomes one more issue on
this list. We therefore consider it out of scope for LVI-NULLify.

Variant 6 , indirect load. When values are loaded indirectly, i.e.,
by loading the target address from memory, arbitrary values can be
injected when the first load is zeroed. Similar to 2 , values are loaded from
address 0x0 with a possible offset. With LVI-NULLify, the now GS-relative
load ensures that this load is inside the enclave’s address space. If the
offset falls within the non-readable pages at the beginning of the enclave,
arbitrary value loading is prevented. Again, offsets are dependent on the
program, and most can be statically determined at compile time, which
allows adjusting the number of buffer pages accordingly in the compiler.
Dynamic arrays of unknown size may still produce transient loads that
reach into the enclave memory itself. In these cases, non-zero data injection
may still occur. Because most cases are prevented, and the remaining rely
on very specific circumstances, we consider this variant mostly mitigated.

236

6 Evaluation

B
IT
F
IE
L
D

F
P
E
M
U
-

L
A
T
IO
N

F
O
U
R
IE
R

A
SSIG

N
M
E
N
T

ID
E
A

H
U
F
F
M
A
N

N
E
U
R
A
L

N
E
T

L
U
D
E
-

C
O
M
P
O
-

SIT
IO
N

ST
R
IN
G

SO
R
T

−1

10

20

30

40
·102

0
.9
3

4
.8
7

8
.9
3

3
.2
8

2
.3
8

9
.5
5

3
.4
7

4
.3
2

0
.6
5

−
0
.3
3

3
0
.4
8

8
0
.9
7

3
.3
6

1
3
.0
5

0
.2
4

5
7
.5
8

5
3
.6
3

1
.4
9

6
.2
9
·1

0
−
4

1
2
2
1
.0
8

1
3
3
.1
9

6
8
4
.0
5

2
2
1
.9

3
0
3
.4
6

7
2
.5
3

1
3
2
.4
5

5

5
7
3
.6
5

1
2
1
7
.2
4

5
8
1
.6
3 1
4
0
1
.6
6

9
3
0
.5
8

7
0
9
.4
8 1
4
5
5
.6
2

1
4
8
2
.1
7

2
7
0
4
.5
8

O
v
er
h
ea
d
[%

]
LVI-NULLify clang-lvi-cfi clang-lvi-opt clang-seses

Figure 9.4: Mean runtime overhead in sgx-nbench [57] on our i5-10210U@1.6GHz
of LVI-NULLify vs. Intel’s control-flow and optimized-cut mitigations
as well as SESES. N=50, standard deviations vs unmitigated mean
plotted, but too small to be visible.

All told, our analysis suggests that LVI-NULLify prevents the majority of
LVI-NULL variants and cases at a significantly lower performance impact
than Intel’s optimized-cut solution, not to mention SESES. Additionally
to this reasoning, we also evaluated our claims with proof-of-concept
implementations of the attack variants. Where our proofs of concept were
successful without LVI-NULLify, enabling it prevents leakage in all cases.

We have no indication whether the discussed remaining vulnerabilities
occur in real-world code. However, C and C++ grant developers vast
freedom to implement features in non-standard ways (e.g. manual jump
tables for 2 that our compiler extension is unaware of) which we would
not catch and, thus, not mitigate. Therefore, our mitigation bridges the
gap between the very expensive optimized-cut mitigation and the less
secure control-flow mitigation. When enclaves are not subject to one of
the described caveats, our mitigation provides the same level of security
as the optimized-cut mitigation at much lower performance cost.

6.2 Performance Evaluation

For the performance evaluation, we first investigate the number of emitted
instructions, i.e., the number of lfences and GS-relative loads, of LVI-
NULLify and Intel’s control-flow and optimized-cut mitigations as well

237

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

as SESES(cf. Section 4.5 and Section 9.2). Our expection is that the
number of lfence instructions has a direct and significant impact on
the performance while GS-relative loads provide better performance. We
substantiate this by benchmarking SGX applications with all of the above
mentioned mitigations.

In line with previous work [18, 30, 31, 50, 55, 56], we evaluate the perfor-
mance of our mitigation based on SGX benchmarks written in C/C++, the
nbench adaptation for SGX [50, 57] and SGXBENCH [44]. As our mitiga-
tion is highly specialized for the SGX environment, we can only benchmark
SGX enclaves, preventing us from measuring the compiler-introduced over-
head for regular benchmarks, such as the SPEC benchmarking suite.

In our setup, we build enclaves with clang 11 and optimization level O3. As
the optimized-cut mitigation by default does not mitigate the enclave entry
assembly, it was compiled with the experimental mitigation for assembly
to provide a better comparison with our mitigation in SGXBENCH,
which measures enclave-entry performance. We evaluate on an Intel Core
i5-10210U (1.6GHz, Comet Lake) and an Intel Core i9-9900K (3.5GHz,
Coffee Lake-R). While the i9-9900K is also affected by LVI, it serves as a
reference for workstation performance, compared to the mobile Comet Lake.
Moreover, this CPU has also been used by Phoronix [11] to benchmark the
overhead of Intel’s LVI mitigations. We provide these results in Section 9.1.
All experiments were run on isolated cores with fixed frequencies to reduce
the variance of the measured values.

6.2.1 Analysis of Emitted Instructions

Table 9.2 shows the result for our evaluation of emitted instructions for the
two benchmarks as well as three libraries that are essential components of
SGX. The SESES mitigation issues the largest amount of lfences, i.e.,
more than 29 700 for libsgx tstdc.a, which is to be expected as it simply
fences every memory read and write that it encounters. Intel’s optimized-
cut mitigation improves upon this by removing more than 23 000 lfences.
The control-flow mitigation further reduces this number, down to 1 400
lfences, but at the cost of reduced security as it does not mitigate all loads.
None of these three mitigations issue a significant number of GS-relative
loads, i.e., 6 at most. Contrary to the other mitigations, LVI-NULLify
issues the lowest amount of lfence instructions but the highest amount
of GS-relative loads. This change in behavior significantly improves the

238

6 Evaluation

performance, as our subsequent performance evaluation of the benchmarks
shows.

Naturally, due to LVI-NULLify replacing certain instructions with a longer
sequence of secure instructions (cf. Figure 9.3), we expect the binaries
that LVI-NULLify generates to be larger than for the Intel mitigations. As
Table 9.2 shows, this is indeed true: in the worst case, we see an increase
of 21.5% over the unmitigated baseline.

6.2.2 nbench

The relative performance overhead shown in Figure 9.4 clearly demon-
strates that the strong LVI-NULL mitigation provided by LVI-NULLify
comes in at or even below the cost of Intel’s control-flow-mitigation,
which only covers variants 2 and 3 . Table 9.3 contains the benchmark’s
raw results in iterations per second. We also see that some of the tests,
like String Sort and Bitfield, operate almost entirely on registers, s.t.
the overheads do not represent the differences of the mitigations very
well. Memory heavier benchmarks like FP Emulation, on the other hand,
clearly demonstrate the advantage of our mitigation vs. Intel’s optimized-
cut mitigation. Here we achieve an overhead reduction of 1216 percentage
points. As this overhead is more in line with the original results by Van
Bulck et al. [15] and Phoronix [11], we consider this to better represent
the difference between the mitigations. We also note some benchmarks
where LVI-NULLify performs better than the unmitigated reference. We
consider this an artifact of cache alignment or similar effects specific to
this benchmark and not representative of our mitigation.

6.2.3 SGXBENCH

When compiling the SGXBENCH[44] suite, we found that some loads
in the benchmarks are not fenced by Intel’s optimized-cut mitigation.
For benchmarks that copy memory, this makes the comparison to our
mitigation rather uninteresting, as tests show very similar performance.
The results for a selection of benchmarks are listed in Section 9.1. Two
of the benchmarks still provide a useful comparison, einit/edestroy and
empty ocall. They show that at ≈ 0.17% and ≈ 3.3% lower performance,
respectively, our mitigation does not introduce any significant slowdown
for this basic enclave functionality.

239

9 Repurposing Segmentation as a Practical LVI-NULLMitigation in SGX

Software
LVI-NULLify

LFENCE / GS / KB

control-flow

LFENCE / GS / KB

optimized cut

LFENCE / GS / KB

SESES

LFENCE / GS / KB

nbench 37 / 11433 / 224(+19%) 319 / 6 / 192(+2%) 3289 / 6 / 200(+7%) 13780 / 6 / 233(+24%)

sgxbench 55 / 4323 / 113(+22%) 231 / 6 / 93(+0%) 1274 / 6 / 97(+4%) 5229 / 6 / 109(+18%)

libsgx trts.a 4 / 1483 / 109(+10%) 105 / 6 / 102(+3%) 591 / 6 / 104(+5%) 1872 / 6 / 108(+9%)

libsgx tstdc.a 0 / 23356 / 1322(+3%) 1400 / 0 / 1367(+7%) 6188 / 0 / 1383(+8%) 29754 / 0 / 1454(+13%)

libsgx tcxx.a 1 / 14916 / 799(+10%) 812 / 0 / 722(-1%) 3353 / 0 / 730(+0%) 17818 / 0 / 775(+6%)

Table 9.2: We show the number of lfence and GS-relative instructions the
different mitigation techniques insert and the overall file size in kB
(and its change to baseline) for a selection of software, including
benchmarks and SGX components.

Test/Mitigation none (σ) LVI-NULLify (σ) control-flow (σ) optimized cut (σ) SESES (σ)
NUMERIC SORT 723.69 (0.181) 718.67 (0.093) 722.15 (0.061) 317.23 (0.018) 100.73 (0.008)
STRING SORT 70.46 (0.003) 70.01 (0.005) 69.43 (0.003) 67.11 (0.002) 2.51 (0.000)
BITFIELD 316 550 164 (165 589) 313 635 987 (102 467) 317 587 729 (228 815) 316 548 172 (411 084) 46 990 509 (1 326)
FP EMULATION 30.17 (0.002) 28.77 (0.009) 23.12 (0.002) 2.28 (0.000) 2.29 (0.000)
FOURIER 23 851.98 (7.853) 21 896.10 (12.773) 13 180.42 (3.819) 10 228.70 (2.137) 3 499.27 (0.086)
ASSIGNMENT 41.72 (0.013) 40.39 (0.004) 40.36 (0.003) 5.32 (0.000) 2.78 (0.000)
IDEA 7 257.17 (0.529) 7 088.14 (0.759) 6 419.30 (20.861) 2 254.47 (0.311) 704.18 (0.060)
HUFFMAN 2335.15 (0.314) 2 131.65 (1.249) 2 329.53 (0.474) 578.78 (0.061) 288.48 (0.012)
NEURAL NET 66.20 (0.027) 63.98 (0.056) 42.01 (0.024) 38.37 (0.004) 4.26 (0.000)
LU DECOMP 1467.54 (0.780) 1 406.82 (0.351) 955.22 (0.434) 631.33 (0.129) 92.75 (0.003)

Table 9.3: Average performance in sgx-nbench [57] on i5-10210U@1.6GHz of our
GS mitigation vs. Intel’s control-flow and optimized-cut mitigations
as well as SESES. Clang 11 was used for all tests. Iterations/s, higher
is better. N=50

7 Discussion and Limitations

Hardware and Microcode Changes. Ultimately, LVI and LVI-NULL
have to be mitigated in silicon, as we can already see from CPUs that are
not affected by any LVI variant. However, as it is infeasible to replace all
affected CPUs, an intermediate solution compatible with affected CPUs
is necessary. Van Bulck et al. [15] suggested the possibility of a microcode
update that simply marks the null page uncachable. However, we identified
several problems with this approach.

First, transient loads from an uncachable page can pick up values from the
line-fill buffer [27, 42]. With hyperthreading enabled, clearing the line-fill
buffer on enclave entry and exit is then also not sufficient.

Second, we experimentally verified that the operating system can change
the memory type of enclave pages. Hence, a malicious operating system
could change the memory type of the null page to cachable. Only if there
is a method to lock entries in the TLB, SGX could ensure that the TLB

240

8 Conclusion

entry for the null page stays in the TLB, preventing the operating system
from changing the memory type.

Hence, we conclude that microcode mitigations are not as simple as
assumed. The fact that there is no microcode update for any CPU to
prevent LVI-NULL also indicates that microcode mitigations might not
be possible.

Limitations. While LVI-NULLify conceptually prevents most variants
of LVI-NULL, our technical implementation is currently limited by a
few factors. Some of these limitations can be solved using additional
engineering effort, while others can be solved directly by the enclave
developer.

Most limitations are due to our proof-of-concept compiler transformation
pass. The transformation pass currently uses a machine function pass
to apply LVI-NULLify. However, as assembly is not handled by this
machine function pass, we currently cannot directly patch inline assembly
or assembly files automatically.

The remaining limitations are due to the pointer conversion between en-
clave and host application. While all the cases where the enclave developer
adheres to best practice and the strict interface definitions are supported,
there are corner cases that cannot be supported in an automated way,
e.g., if the pointer is hidden behind an unknown type and reinterpreted
by the developer.

8 Conclusion

In this paper, we presented a novel, lightweight defense against LVI-NULL
in SGX. Based on a systematic analysis of LVI-NULL variants, we identified
the attack requirements and discovered that previous mitigations targeting
LVI-NULL are not effective. Our mitigation, LVI-NULLify, addresses this
problem by repurposing segmentation to offset every load during enclave
execution. LVI-NULLify consists of a modified SGX-SDK and a compiler
extension that we open source. We evaluated LVI-NULLify on LVI-fixed
CPUs and observed a performance overhead below 10% for the worst case,
which is substantially lower than previous defenses. We conclude that
LVI-NULLify is a practical solution to protect SGX enclaves on processors
that remain susceptible to LVI-NULL.

241

Acknowledgments

We want to thank the anonymous reviewers and especially our shepherd,
Fangfei Liu, for their comments and suggestions. We also want to thank
Aikata Aikata for her support with hardware procurement. This project
has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme
(Grant agreement No. 681402). Additional funding was provided by gen-
erous gifts from Intel, Amazon and ARM. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding parties.

References

[1] Zola Bridges. LLVM SESES pass for LVI. 2020. url: https://re
views.llvm.org/D75939 (p. 225).

[2] Claudio Canella, Khaled N. Khasawneh, and Daniel Gruss. The
Evolution of Transient-Execution Attacks. In: GLSVLSI. 2020
(p. 215).

[3] Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss,
and Khaled N. Khasawneh. Evolution of Defenses against Transient-
Execution Attacks. In: GLSVLSI. 2020 (p. 215).

[4] Claudio Canella, Michael Schwarz, Martin Haubenwallner, Martin
Schwarzl, and Daniel Gruss. KASLR: Break It, Fix It, Repeat. In:
AsiaCCS. 2020 (pp. 213, 216).

[5] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei
Zhao, Jian Zhai, and Mingshu Li. Bluethunder: A 2-level Directional
Predictor Based Side-Channel Attack against SGX. In: CHES. 2020
(p. 217).

[6] Intel. Affected Processors: Transient Execution Attacks. 2020. url:
https://software.intel.com/security-software-guidance

/processors-affected-transient-execution-attack-mitiga

tion-product-cpu-model (pp. 213, 216).

[7] Intel. An Optimized Mitigation Approach for Load Value Injection.
2020. url: https://software.intel.com/security-software-
guidance/best-practices/optimized-mitigation-approach-

load-value-injection (p. 225).

242

https://reviews.llvm.org/D75939
https://reviews.llvm.org/D75939
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/processors-affected-transient-execution-attack-mitigation-product-cpu-model
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injection
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injection
https://software.intel.com/security-software-guidance/best-practices/optimized-mitigation-approach-load-value-injection

References

[8] Intel. Load Value Injection. 2020. url: https://software.intel
.com/content/www/us/en/develop/articles/software-secur

ity-guidance/technical-documentation/load-value-inject

ion.html (pp. 213, 216, 223, 225).

[9] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity
from Software. In: USENIX Security Symposium. 2020 (p. 219).

[10] Michael Larabel. Google Engineer Shows ”SESES” For Mitigating
LVI + Side-Channel Attacks. 2020. url: https://www.phoronix
.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-

LVI-More (p. 225).

[11] Michael Larabel. The Brutal Performance Impact From Mitigating
The LVI Vulnerability. 2020. url: https://www.phoronix.com/s
can.php?page=article&item=lvi-attack-perf (pp. 213, 216,
225, 238, 239).

[12] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz.
Medusa: Microarchitectural Data Leakage via Automated Attack
Synthesis. In: USENIX Security Symposium. 2020 (pp. 215, 226).

[13] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. Plundervolt: Software-based
Fault Injection Attacks against Intel SGX. In: S&P. 2020 (p. 219).

[14] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling,
Florian Kargl, and Daniel Gruss. ConTExT: A Generic Approach
for Mitigating Spectre. In: NDSS. 2020 (p. 226).

[15] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp,
Marina Minkin, Daniel Genkin, Yarom Yuval, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In: S&P. 2020
(pp. 213–216, 220, 222–226, 235, 236, 239, 240).

[16] Yuan Xiao, Yinqian Zhang, and Radu Teodorescu. SPEECH-
MINER: A Framework for Investigating and Measuring Speculative
Execution Vulnerabilities. In: NDSS. 2020 (p. 215).

[17] Wenjie Xiong and Jakub Szefer. Survey of Transient Execution
Attacks. In: arXiv:2005.13435 (2020) (p. 215).

[18] Wenjia Zhao, Kangjie Lu, Yong Qi, and Saiyu Qi. MPTEE: Bring-
ing Flexible and Efficient Memory Protection to Intel SGX. In:
EuroSys. 2020 (p. 238).

243

https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://software.intel.com/content/www/us/en/develop/articles/software-security-guidance/technical-documentation/load-value-injection.html
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-LVI-More
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-LVI-More
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-SESES-Mitigating-LVI-More
https://www.phoronix.com/scan.php?page=article&item=lvi-attack-perf
https://www.phoronix.com/scan.php?page=article&item=lvi-attack-perf

[19] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout:
Leaking Data on Meltdown-resistant CPUs. In: CCS. 2019 (p. 215).

[20] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp,
Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Ev-
tyushkin, and Daniel Gruss. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In: USENIX Security Symposium.
Extended classification tree and PoCs at https://transient.fail/.
2019 (pp. 213, 215, 219, 222).

[21] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. SgxPectre Attacks: Stealing Intel Se-
crets from SGX Enclaves via Speculative Execution. In: EuroS&P.
2019 (pp. 217, 219).

[22] Intel. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling. 2019 (p. 217).

[23] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2 (2A, 2B & 2C): Instruction Set Reference, A-Z. 2019
(p. 230).

[24] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre
Attacks: Exploiting Speculative Execution. In: S&P. 2019 (pp. 212,
213, 215, 219).

[25] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Breaking SGX by Software-Controlled Voltage-Induced
Hardware Faults. In: AsianHOST. 2019 (p. 219).

[26] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In: S&P. 2019 (pp. 217,
218, 226).

[27] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad:
Cross-Privilege-Boundary Data Sampling. In: CCS. 2019 (pp. 212,
215, 217, 218, 226, 240).

[28] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. NetSpectre: Read Arbitrary Memory over Network.
In: ESORICS. 2019 (p. 215).

244

References

[29] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri,
Flavio Garcia, and Frank Piessens. A Tale of Two Worlds: Assessing
the Vulnerability of Enclave Shielding Runtimes. In: CCS. 2019
(p. 219).

[30] Samuel Weiser, Luca Mayr, Michael Schwarz, and Daniel Gruss.
SGXJail: Defeating Enclave Malware via Confinement. In: RAID.
2019 (p. 238).

[31] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen,
Yinqian Zhang, XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin.
Racing in hyperspace: closing hyper-threading side channels on
SGX with contrived data races. In: S&P. 2018 (p. 238).

[32] Adam Chester. Exploiting Windows 10 Kernel Drivers - NULL
Pointer Dereference. 2018 (p. 223).

[33] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE,
and Dmitry Ponomarev. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In: ASPLOS. 2018 (p. 217).

[34] Daniel Gruss, Moritz Lipp, Michael Schwarz, Daniel Genkin, Jonas
Juffinger, Sioli O’Connell, Wolfgang Schoechl, and Yuval Yarom.
Another Flip in the Wall of Rowhammer Defenses. In: S&P. 2018
(p. 219).

[35] Jago Gyselinck, Jo Van Bulck, Frank Piessens, and Raoul Strackx.
Off-limits: Abusing legacy x86 memory segmentation to spy on
enclaved execution. In: ESSoS. 2018 (p. 219).

[36] Jann Horn. speculative execution, variant 4: speculative store by-
pass. 2018 (pp. 213, 215).

[37] Intel. Branch Target Injection / CVE-2017-5715 / INTEL-SA-00088.
2018. url: https://software.intel.com/security-softwar
e-guidance/advisory-guidance/branch-target-injection

(p. 230).

[38] Intel. Deep Dive: Intel Analysis of L1 Terminal Fault. 2018 (p. 217).

[39] Intel. Speculative Execution Side Channel Mitigations. Revision
3.0. 2018 (p. 224).

[40] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and Defenses. In: arXiv:1807.03757 (2018) (pp. 213,
215).

245

https://software.intel.com/security-software-guidance/advisory-guidance/branch-target-injection
https://software.intel.com/security-software-guidance/advisory-guidance/branch-target-injection

[41] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation At-
tacks using the Return Stack Buffer. In: WOOT. 2018 (p. 213).

[42] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Melt-
down: Reading Kernel Memory from User Space. In: USENIX
Security Symposium. 2018 (pp. 212, 215, 218, 240).

[43] G. Maisuradze and C. Rossow. ret2spec: Speculative Execution
Using Return Stack Buffers. In: CCS. 2018 (pp. 213, 215).

[44] Raul Quinonez. SGXBENCH framework for benchmarking SGX
enclaves. 2018. url: https://github.com/sgxbench/sgxbench
(pp. 238, 239).

[45] Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs
using Modern CPU Features. In: AsiaCCS. 2018 (p. 219).

[46] Julian Stecklina and Thomas Prescher. LazyFP: Leaking
FPU Register State using Microarchitectural Side-Channels. In:
arXiv:1806.07480 (2018) (p. 215).

[47] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch,
Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution.
In: USENIX Security Symposium. 2018 (pp. 217, 218).

[48] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU Inter-
rupt Logic. In: CCS. 2018 (p. 217).

[49] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In: WOOT. 2017
(pp. 217, 219).

[50] Yangchun Fu, Erick Bauman, Raul Quinonez, and Zhiqiang Lin.
SGX-LAPD: Thwarting Controlled Side Channel Attacks via En-
clave Verifiable Page Faults. In: International Symposium on Re-
search in Attacks, Intrusions, and Defenses. Springer. 2017 (p. 238).

246

https://github.com/sgxbench/sgxbench

References

[51] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-
Bomb: Locking Down the Processor via Rowhammer Attack. In:
SysTEX. 2017 (p. 219).

[52] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon
Kim, and Marcus Peinado. Inferring Fine-grained Control Flow
Inside SGX Enclaves with Branch Shadowing. In: USENIX Security
Symposium. 2017 (p. 217).

[53] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX amplifies the power of cache attacks. In:
CHES. 2017 (pp. 217, 219).

[54] Michael Schwarz, Daniel Gruss, Samuel Weiser, Clémentine Mau-
rice, and Stefan Mangard. Malware Guard Extension: Using SGX
to Conceal Cache Attacks. In: DIMVA. 2017 (pp. 217, 219).

[55] Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih,
Insik Shin, Dongsu Han, and Taesoo Kim. SGX-Shield: Enabling
Address Space Layout Randomization for SGX Programs. In: NDSS.
2017 (p. 238).

[56] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado.
T-SGX: Eradicating controlled-channel attacks against enclave
programs. In: NDSS. 2017 (p. 238).

[57] utds3lab. Adaptation of nbench-byte-2.2.3 for Intel SGX. 2017.
url: https://github.com/utds3lab/sgx-nbench (pp. 237, 238,
240, 249).

[58] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control.
In: Workshop on System Software for Trusted Execution. 2017
(pp. 217, 219, 251).

[59] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens,
and Raoul Strackx. Telling Your Secrets Without Page Faults:
Stealthy Page Table-Based Attacks on Enclaved Execution. In:
USENIX Security Symposium. 2017 (p. 217).

[60] Victor Costan and Srinivas Devadas. Intel SGX Explained. In:
Cryptology ePrint Archive, Report 2016/086 (2016) (pp. 216, 217,
233).

[61] Intel. Intel Software Guard Extensions SDK for Linux OS Developer
Reference. Rev 1.5. May 2016 (p. 234).

247

https://github.com/utds3lab/sgx-nbench

[62] Intel. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1: Basic Architecture. 2016 (p. 230).

[63] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger
Kapitza. AsyncShock: Exploiting Synchronisation Bugs in Intel
SGX Enclaves. In: ESORICS. 2016 (p. 219).

[64] David Drysdale. How programs get run: ELF binaries. 2015. url:
https://lwn.net/Articles/631631/ (p. 218).

[65] Hans Wennborg. The recent switch lowering improvements. Oct.
2015. url: http://llvm.org/devmtg/2015-10/slides/Wennbor
g-SwitchLowering.pdf (p. 230).

[66] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted Oper-
ating Systems. In: S&P. 2015 (pp. 217, 219).

[67] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flip-
ping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors. In: ISCA. 2014 (p. 219).

[68] Daniel Pierre Bovet. Special sections in Linux binaries. Jan. 2013.
url: https://lwn.net/Articles/531148/ (p. 218).

[69] Anton Korobeynikov. Improving Switch Lowering for The LLVM
Compiler System. In: SYRCoSE. May 2007 (p. 230).

[70] Hovav Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In: CCS. 2007
(p. 220).

[71] Chris Lattner and Vikram S. Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In: IEEE
/ ACM International Symposium on Code Generation and Opti-
mization – CGO. 2004 (p. 230).

[72] Nergal. The advanced return-into-lib(c) explits: PaX case study.
2001 (p. 220).

248

https://lwn.net/Articles/631631/
http://llvm.org/devmtg/2015-10/slides/Wennborg-SwitchLowering.pdf
http://llvm.org/devmtg/2015-10/slides/Wennborg-SwitchLowering.pdf
https://lwn.net/Articles/531148/

9 Appendix

B
IT
F
IE
L
D

F
P
E
M
U
-

L
A
T
IO
N

F
O
U
R
IE
R

A
SSIG

N
M
E
N
T

ID
E
A

H
U
F
F
M
A
N

N
E
U
R
A
L

N
E
T

L
U
D
E
-

C
O
M
P
O
-

SIT
IO
N

ST
R
IN
G

SO
R
T

−1

10

20

30

·102

0
.5
4

3
3
.1
6

3
6
.3
8

3
.2
5

1
1
.8
8

9
.3
4

9
.0
4

3
1
.2
6

1
.5
9

−
0
.7
4

5
0
.4
4

1
0
1
.8
7

2
.9
8

2
3
.6
7

0
.2 6
7
.8
9

6
8
.2
2

1
.9
7

−
0
.3
3

1
2
2
8
.5
5

1
5
1
.8
3 6
8
4
.9
2

2
3
0
.6
3

3
0
3
.5
2

8
2
.7
4

1
3
8
.0
4

5
.3
6

5
6
7
.8
6

1
2
2
3
.5
7

5
7
3
.9
6

1
3
9
8
.6
9

9
5
4
.8
3

7
0
9
.8

1
4
6
8
.3
4

1
3
7
8
.8
3

2
6
8
8
.5
5

O
v
er
h
ea
d
[%

]
LVI-NULLify clang-lvi-cfi clang-lvi-opt clang-seses

Figure 9.5: Mean performance overhead in sgx-nbench [57] on our i9-
9900K@3.5GHz of LVI-NULLify vs. Intel’s control-flow and optimized-
cut mitigations as well as SESES. Clang 11 was used for all tests.
N=50, standard deviations w.r.t. baseline mean are plotted, but too
small to be visible.

9 Appendix

9.1 Benchmarking results

In addition to our LVI-NULL-only affected Comet Lake CPU, we also
provide benchmark overheads for the older i9-9900K Coffee Lake CPU in
Figure 9.5. We can see that while their are some differences, the relative

Test/Mitigation none (σ) LVI-NULLify (σ) control-flow (σ) optimized cut (σ) SESES (σ)

empty function 37072.3 (2655.0) 37660.3 (1878.0) 37349.9 (1832.2) 39015.5 (1701.7) 42612.8 (3325.2)

empty ocall 14496.6 (1151.5) 14980.8 (1096.3) 14735.5 (1146.6) 16052.1 (1080.8) 15995.6 (995.6)

ocall in/out 15651.8 (835.7) 16433.0 (809.6) 16236.2 (702.1) 17510.5 (819.4) 23309.8 (1023.8)

encrypted read 14884.4 (756.5) 15228.5 (843.2) 14984.3 (758.9) 16429.6 (799.8) 21868.8 (966.6)

encrypted write 14720.8 (799.7) 15279.9 (827.8) 14989.7 (740.8) 16507.6 (779.2) 21866.2 (967.0)

einit/edestroy 141845200.9 (793624.2) 142087389.7 (849561.9) 142354110.9 (841980.8) 142506399.6 (798824.8) 142649039.2 (827876.1)

Table 9.4: Runtime of the SGXBENCH benchmarks on an i5-10210U@1.6GHz in
cycles. Lower is better. N=1000000 for all except eint/edestroy where
N=1000

249

performances between the mitigations is roughly the same on this desktop
CPU as it is on the mobile i5-10210U.

Table 9.4 shows the execution times for various SGXBENCH benchmarks
on our Comet Lake i5-10210U.

9.2 Sample Compilation Options for Mitigations

Control-flow Mitigation:
clang-lvi-cfi -mlvi-cfi -Iclang-lvi-cfi/sgxsdk/include

-Iclang-lvi-cfi/sgxsdk/include/tlibc -fpic -O3 -nostdinc

-fvisibility=hidden -fstack-protector -fpic -c Enclave.c

-o Enclave.o

SESES Mitigation:
clang-lvi-seses -mseses -Iclang-lvi-seses/sgxsdk/include

-Iclang-lvi-seses/sgxsdk/include/tlibc -fpic -O3 -nostdinc

-fvisibility=hidden -fstack-protector -fpic -c Enclave.c

-o Enclave.o

Optimized-Cut Mitigation:
clang-lvi-opt -mlvi-hardening

-mllvm -x86-lvi-load-opt-plugin=OptimizeCut.so

-mllvm -x86-experimental-lvi-inline-asm-hardening

-Iclang-lvi-opt/sgxsdk/include

-Iclang-lvi-opt/sgxsdk/include/tlibc -fpic -O3 -nostdinc

-fvisibility=hidden -fstack-protector -fpic

-c Enclave.c -o Enclave.o

250

9 Appendix

9.3 LVI-NULL POC Implementation Details

In addition to LVI-NULLify, the relevant proofs of concept can also be
found in our repository at https://github.com/IAIK/LVI-NULLify/.

For attacks on SGX, an attacker would typically use a framework like
SGX-Step [58] to interfere with a victim enclave at more or less precise
points. For our POCs however, we can use a more cooperative approach,
which simplifies the code and imitates a very strong attacker. Right before
vulnerable loads in our victim, we OCALL to the attacker who then
removes the accessed bit from our target page. This reliably causes 0 to
be injected into the next loads from this page, triggering our LVI-NULL
attacks. We can then measure rates of leakage via a transmission gadget;
in our case an access to a page outside the enclave.

When we compile with LVI-NULLify, we see that all leakage is completely
prevented.

9.4 Artifact Appendix

9.4.1 Abstract

The public repository2 contains all the code necessary to reproduce the
data for all performance graphs/tables in the paper, as well as PoCs to
demonstrate that the mitigation works. This includes patches and build
instructions for LLVM11, the Intel SGX SDK and PSW, as well as the
benchmarks. The artifact requires SGX to evaluate, and is easiest to run
on Ubuntu 18.04 or 20.04.

9.4.2 Artifact check-list (meta-information)

• Program: Adapted versions of nbench and sgxbench are downloaded
& installed via included scripts.

• Compilation: Requires a modified Clang 11, install & download
script is included.

• Transformations: A tool to fix up relocations is included (relocator).

2https://github.com/IAIK/LVI-NULLify/

251

https://github.com/IAIK/LVI-NULLify/
https://github.com/IAIK/LVI-NULLify/

• Run-time environment: Needs a native Linux installation that
supports SGX, Ubuntu 18.04 or 20.04 are strongly recommended.
Build scripts need internet access at several points. Requires root for
installation and evaluation. PoCs require the PTEditor kernel module.

• Hardware: Intel CPU with SGX support, needs to be vulnerable to
LVI-Null for PoC tests (affected CPUs).

The PoCs need a kernel module, which means either self-signing or
disabling secure boot. This may require physical access to the machine.

• Run-time state: As this artifact includes performance benchmarks,
a stable CPU frequency and isolated cores are recommended.

• Execution: For ideal testing, the system should have isolated cores,
fixed frequency, and not much other activity.

• Metrics: Benchmarks report cycle count or iterations/s, PoCs report
leakage percentage.

• Output: Benchmark outputs are .csv tables with performance, an
included spreadsheet can convert to a graph similar to the paper.

• Experiments: Installation scripts are included and described here
and in READMEs.

• How much disk space required (approximately)?: 4-5GB

• How much time is needed to prepare workflow (approxi-
mately)?: 2-3h

• How much time is needed to complete experiments (approxi-
mately)?: 3-6h, depends on hardware

• Publicly available?: https://github.com/IAIK/LVI-NULLify/

• Code licenses (if publicly available)?: zlib

9.4.3 Description

How to access Clone https://github.com/IAIK/LVI-NULLify/tre

e/ae_final and follow the README.md from there.

252

https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://github.com/IAIK/LVI-NULLify/
https://github.com/IAIK/LVI-NULLify/tree/ae_final
https://github.com/IAIK/LVI-NULLify/tree/ae_final

9 Appendix

Hardware dependencies As this is a mitigation for Intel SGX, SGX
support is a hard requirement. To fully evaluate the PoCs, and not just
mitigation performance, the CPU also needs to be vulnerable to LVI. You
can check if your CPU is vulnerable here: https://software.intel.c
om/content/www/us/en/develop/topics/software-security-guida

nce/processors-affected-consolidated-product-cpu-model.html

Software dependencies We strongly recommend Ubuntu 18.04 or
20.04 as these are officialy supported by Intel, and all our tools were tested
on them.

Beyond standard compilation tools (ninja, cmake etc) our PoCs require the
PTEditor kernel module 3. Other requirements are listed in the README
files at the appropriate points.

9.4.4 Installation

Follow the detailed README in the top-level directory to set up our
modified clang compiler and relocator and install the SGX driver as well
as our modified SGX SDK and PSW.

Once that is done, you can already test your installation with the PoCs
by following the README file in the POC directory.

With a working PSW and driver, you can follow the README in the
benchmarks directory to download and build the benchmarks.

9.4.5 Experiment workflow

After building the benchmarks, follow along in the README to start
all or a subset of them. An important aspect to keeping benchmarks
comparable is to fix the CPU’s frequency to a sustainable level, and idealy
run them on an isolated core.

PoCs can be run according to the README in the POC folder.

3https://github.com/misc0110/PTEditor/

253

https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://github.com/misc0110/PTEditor/

9.4.6 Evaluation and expected results

The main results in our paper are contained in Figure 4/Table 3. These
are the performance overheads of our LVI-NUll mitigation compared to
other, similar mitigations. The second, more implicit result is the efficacy
of LVI-NULLify.

For the benchmarks, the absolute performance overheads vary significantly
between different machines and architectures (compare Figure 4 and
Figure 5), but the relative differences should be roughly similar. That
is: LVI-Nullify should be the fastest mitigation, or at least very close to
Intel CFI, typically followed, with some distance, by Intel’s optimized-cut
mitigation.

For the PoCs, starting once without and once with mitigation should pro-
duce qualitatively similar results to the examples shown in the README.
That means, for the 3 PoCs where LVI-Nullify is effective, leakage rate
should drop to zero, or a level that is comparable to the noise-catching
output ”other”. While absolute leakage rates before applying the mitiga-
tion may differ significantly from system to system, they should be clearly
differentiable from ”other”.

The respective READMEs for benchmarks and PoCs detail how to repro-
duce these results.

9.4.7 Experiment customization

Attack PoCs need a cache miss threshold, which is automatically deter-
mined. If this doesn’t work, it can be set manually in the corresponding
App.cpp file. All PoCs include a conf.h file, in which the character that
should be leaked can be changed if desired.

Both benchmark run-scripts contain a variable called ”isolated core” that
sets the core on which they should be run on. Set this to an isolated core,
if available.

sgx-nbench contains a parameter to change the number of iterations in
the file, see the benchmarking README.

254

9 Appendix

9.4.8 Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-revie

w-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

255

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used anything other than the declared sources / resources, and that I have
explicitly marked all material which has been quoted either literally or by
content from the used sources.

257

	Contents
	Microarchitectural Attacks and Defenses for Isolated Domains
	Introduction and Contributions
	Background
	State of the Art
	Conclusion
	References

	Publications
	List of Publications
	Cohere+Reload: Re-enabling High-Resolution Cache Attacks on AMD SEV-SNP
	Generic and Automated Drive-by GPU Cache Attacks from the Browser
	Scatter and Split Securely: Defeating Cache Contention and Occupancy Attacks
	Fast and Efficient Secure L1 Caches for SMT
	Repurposing Segmentation as a Practical LVI-NULL Mitigation in SGX

