
Fast and Efficient Secure L1 Caches for SMT

Lukas Giner, Roland Czerny, Simon Lammer, Aaron Giner, Paul Gollob, Jonas
Juffinger, and Daniel Gruss

Graz University of Technology
first.last@tugraz.at

Abstract. Secure randomized caches use the latency budgets of last-
level caches to isolate data by security domain. In contrast, L1 caches
are very latency- and size-constrained (by cache ways and page size),
hindering both the adoption of secure randomized designs and increases
in size without losing backward compatibility due to page size changes.
We propose a new secure and larger L1 cache design for SMT cores: SMT
Cache. SMTCache uses separate, identical L1 caches (slices) to isolate
security domains. The overall cache size scales with the number of SMT
threads, with individual slices mirroring current designs without chang-
ing the page size. SMTCache consumes less power than larger sets and
does not increase hit latency. We show that SMTCache is a principled
mitigation against L1 cache attacks and fundamentally precludes vul-
nerabilities like L1TF. Further, we measure that SMTCache improves
L1 cache performance compared to current designs and even remains
competitive with larger caches. For instance, on a system with SMT-
2, SMTCache provides equivalent hit ratios across the SPEC CPU2017
suite to a state-of-the-art L1 cache of comparable size while improving
system security and significantly reducing energy costs.

1 Introduction

Caches hide the high access times of main memory by storing recently used
data within the CPU. With low latency, limited space, and sharing across se-
curity contexts, they are an attractive target for attacks. Attacks range from
side channels [7,16,22,35,46] to severe vulnerabilities like Meltdown [29] and its
variants [8,45,47,49,54,56]. All of these attacks rely on the cache being a shared
resource without security domain isolation.

While recent secure cache proposals address this problem for the large last-
level caches [10,14,41,43,51,57], low latency is crucial for L1 caches. Hence, we
cannot simply apply last-level secure cache designs to the L1 cache. Furthermore,
partitioning the L1 cache is costly as it is already very size-constrained. Due to
the virtual indexing, the L1 size is determined by the number of ways times the
page size, which for commodity laptop, desktop, and server CPUs has been 4KiB
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for over a decade. This limits an 8-way L1 cache to a maximum size of 4KiB⋅8 =

32KiB. Thus, there are currently only two options to increase the L1 cache size,
without even taking security considerations into account: First, like some recent
Intel server CPUs, the number of ways per set is increased (e.g., from 8 to
12), at the cost of a super-linear increase in energy consumption [1,37]. Second,
like recent Apple CPUs, the page size could be increased (e.g., to 16KiB [12]).
However, this is only possible given Apple’s firm control of both hardware and
software on their machines, reducing the need for backward compatibility. Still,
with this change, Apple increased the L1 cache size to 128KiB. While this shows
that die area near the execution core is available, it further emphasizes the page
size as a limiting factor to efficiently scale the L1 and its lack of security that
becomes increasingly interesting for attacks.

This leads us to investigate the following research questions:
How can we prevent L1 cache attacks in a principled way? Is it possible to in-
crease L1 cache size and security without substantial efficiency loss or software-
breaking changes? What is the energy cost of scaling the L1 cache?

In this paper, we propose SMTCache, a secure L1 data cache (L1D) design that
offers advantages in L1 cache size, security, and energy efficiency on CPUs with
simultaneous multithreading (SMT). SMTCache stays within the existing ISA
specifications as well as power and latency budgets of commodity off-the-shelf
CPUs. We achieve this by creating independent L1D slices (like L3 slices) ac-
cessed by a memory address and a security domain. Every domain has its own
L1 slice, ensuring principled data separation.

In our default configuration, SMTCache does not require operating system
support and switches domains based on existing mechanisms, i.e., user mode and
kernel mode. This provides out-of-the-box data separation between processes and
the operating system. From the point of view of processes, they have their own
private L1D cache without interference or data leakage from one SMT thread
or process to another. Often, the number of processes active on a core is higher
than the number of L1D slices (we evaluate up to 9 slices per core). If a process
is scheduled to run on a core where it does not have a slice assigned, the least
recently used (LRU) slice is flushed to higher cache levels, and the new process
gets this slice exclusively until it is eventually flushed for a different process.

Each slice can be the same size as current L1D caches, as sets are addressed
by their domain in addition to the virtual address, thereby sidestepping the
page-size limitation while scaling the cache. The maximum active number of
slices is limited to the number of SMT threads. For SMT-2, this doubles the
effective available L1D cache space for simultaneously running processes. When
the operating system schedules only a small number of processes on a core, this
markedly increases performance as processes are not competing over cache space.
With more slices than SMT threads, inactive slices store currently unused data
for different processes that are not running while only drawing static power.

We evaluate the performance of SMTCache in CacheSim [15] and on traces
recorded on a native Linux server running different workloads, as well as the
functionality via micro-benchmarks with Linux on gem5 [5, 33]. Our evaluation
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shows that performance scales very well with SMT and often exceeds the per-
formance of an equivalently large standard cache due to the inherent thrashing
protection. For SMT-2, and especially SMT-4 (Section 6.1), SMTCache increases
the available L1 cache per thread while guaranteeing fairness and security. We
find that a number of slices higher than SMT ways + 1 only minimally improves
performance, as processes rarely return to an empty L1D cache at that point.
Contributions. In summary, our main contributions are:
– We propose a novel secure L1 cache design, SMTCache, providing strict iso-
lation between security domains on the hardware level.

– SMTCache builds on the synergetic introduction of security and performance
enhancements to expand cache sizes without breaking backward compatibility.

– We provide a security argument for SMTCache, showing that it mitigates a
range of state-of-the-art attacks in a principled way.

– We evaluate the performance of SMTCache in many different configurations
and demonstrate that it offers competitive hit ratios even when compared to
larger monolithic L1 caches like Apple’s M1.

Outline. Section 2 presents background and Section 3 the design. Section 4
discusses energy and area costs and Section 5 security. Section 6 evaluates the
performance. Section 7 presents related and future work. Section 8 concludes.

2 Background

In this section, we discuss caches, limiting factors for their size, traditional and
secure L1 designs as well as their attack surfaces.
Caches. CPU caches are buffers close to the CPU, orders of magnitude smaller
than main memory. They hide high memory access latencies for recently used
data. In modern set-associative caches, addresses are statically mapped to one
of many sets of cache lines and occupy any of the ways within that set.

Traditional caches are organized in a 3-level hierarchy, with the cache closest
to the CPU (L1) being the smallest and fastest, with acritical impact on CPU
performance. Unlike higher-level caches, most L1 caches use the virtual address
to index the cache set to reduce latency by already looking for a cache line
while translating the address. To not map a physical address to multiple sets,
the index is taken only from bits shared with the virtual address, i.e., the page
offset, typically 12 bit. This limits the L1 cache size by the page size and number
of ways, e.g., 4KiB⋅8ways = 32KiB. Hence, traditional L1 cache size can only be
increased with the page size, the number of ways, or by dropping the virtually
indexed design. Intel increased the L1D cache size of the “Core” CPUs from
16KiB to 32KiB and 48KiB with the number of ways, from 4 to 8 and 12.
In the Apple M1, the 16KiB page size allows for a 128KiB L1D cache and a
192KiB L1 instruction cache (L1I).

The drawback of increasing the associativity is a rising energy cost per ac-
cess due to two factors: Firstly, the number of tags that need to be searched to
determine a cache hit increases proportionally to the number of ways. Implemen-
tations may also load the data of all lines in a set at the time of the tag compar-
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ison [36], further adding to the increased energy demand. Secondly, super-linear
components to the power draw grow with the size of a cache set [1, 37].

Cache Coherence. When multiple cores access the same memory location on
a CPU with private, per-core caches, writes on one core need to become visible
to other cores as soon as possible. There are various coherence protocols that
ensure this memory consistency. In the simplest case, caches need to know if
a local copy of a cache line is modified, shared, or invalid (MSI). There are
two common methods to implement coherence protocols, snooping and cache
directories [38]. Snooping protocols work by broadcasting each memory request
to all caches but are only viable for a low number of caches. Directories can
solve this problem by centralizing the protocol’s state information at a point of
coherence. In inclusive cache hierarchies, the last-level cache (LLC) stores all
cache lines found in lower levels and can, therefore, also act as the directory.

Cache Attacks. As caches are shared and introduce timing differences, they
have been a popular target for side-channel research. In a cache attack, an at-
tacker observes different access times to their data to infer a victim’s behavior.
With knowledge about cache architecture, refined cache attacks are possible.

Attacks on Cache Metadata. The simplest form of these attacks are time-
driven attacks, such as Bernstein’s attack [4] or Evict+Time [39]. The latter,
for example, evicts an AES T-Table entry by filling the cache set with attacker
memory. By timing the victim’s execution the attacker can infer if this entry was
used. A more noise-resilient evolution is Prime+Probe, where the attacker first
primes a set by filling it, and then probes it by timing accesses. If the victim
used a line in this set in between, the attacker measures a longer access and
can observe the victim’s accesses at the granularity of cache sets. Prime+Probe
requires a set of addresses that map to the same cache set, called an eviction
set. The Flush+Reload [60] attack enables cache line accuracy if attacker and
victim share memory, by not relying on set conflicts but measuring the target
line directly. The attacker uses the clflush instruction to evict the targeted
address precisely, and later measures it again to see if the victim has brought it
into the cache. Achieving shared memory with a victim is more challenging than
co-location, and clflush might be unavailable. Evict+Reload [17,27] removes
the need for clflush by replacing it with set eviction like Prime+Probe.

Attacks with Caches. Meltdown, Spectre, etc. [28,49,54] use caches for their
covert-channel to recover data encoded during speculative execution. This is
possible because the state of the caches is not reversed when a speculatively
execution is aborted. Meltdown variants leaking from the L1 Cache (or the Line
Fill Buffer) exploit caches that does not check permissions when data is served.

Secure Cache Designs and Related Work. With some of the attacks known
for decades, many secure cache designs have been proposed, generally based
on two methods: randomization or partitioning. The former tries to obscure
access patterns by making them seemingly random, while the later tries to make
accesses unobservable. Many designs require complex functions whose latency
is too large for the L1 and only target the LLC [10, 14, 30, 40–43, 51–53, 57]
assuming the other caches are secure. In Section 7 we detail these secure caches
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Fig. 1: SMTCache abstract design for n slices. At most 2 slices are active at the same
time, one per SMT thread. The SMTCache controller ensures coherence between slices
and that SMTCache appears like a normal cache to higher cache levels.

and highlight how SMTCache is orthogonal to many of them and discuss how
SMTCache can complement them for improved security and performance.

3 The SMTCache Architecture

At the heart of SMTCache are a number of n identical slices; complete L1
data caches with standard parameters, e.g., 8 ways, 32KiB size as shown in
Figure 1. At each context switch (security domain switch), one slice is assigned
to the process. Until the next context switch, requests from the SMT thread
are statically routed to this slice by a switch. From the perspective of the core,
cache hits on this slice behave identical to a standard L1 design cache hit. The
communication with the higher-level caches, however, runs through the SMT
Cache controller (Section 3.3), presenting SMTCache as a standard L1 cache.
This, of course, adds extra latency. While our design could also be used for
instruction caches, we focus on L1 data caches to limit the scope.

3.1 Domains

An important aspect of isolation-based designs is how security domains are de-
rived. We propose a basic in-hardware implementation augmented with optional
software control. The default configuration changes the slice assignment when
the process (PCID/CR3) or the protection ring change. When the protection ring
is 3, the CR3 register represents the domain ID, when it is less than 3, it is con-
sidered the kernel domain, regardless of the CR3 value. All kernel threads there-
fore share one slice, while userspace processes are isolated. This ensures security
boundaries in line with standard OS process isolation. This is the backward-
compatible mode of the design that works regardless of OS version.

With OS support, this could be enhanced to be more or less precise via MSRs.
A process might, e.g., want to isolate its threads to maximize its L1D cache size,
while another might want to share one slice among an entire process group. As
this is highly workload dependent, we do not evaluate OS support in this work.
Hypervisors and SGX. With a hypervisor, we can simply consider ring -1
the only mandatory domain in the default configuration. Thus, the hypervisor
and guest can never share an L1. Intel SGX [21] has the unique situation that
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Fig. 2: Domain swapping with modified LRU for SMTCache with 4 slices. Context
switches cannot replace active caches and bring the last active slice to the second-most
recently used position. As the context switches are performed by the kernel (K) its slice
is always most or second-most recently used automatically and can never be evicted.

the hardware is generally under the control of the untrusted OS, yet SGX must
be secure. We can accommodate this by always treating each enclave as a unique
domain, irrespective of any configuration the OS might have chosen.

3.2 Slice Swapping

When a new domain not currently associated with a slice is assigned to a core,
one of the slices is chosen to be evicted. On eviction, the hardware flushes all
modified (dirty) cache lines to the higher cache levels, unmodifed (clean) cache
lines can simply be dropped. When the number of slices equals the number of
SMT ways n = nSMT , the slices can be statically assigned to logical cores, and
the current slice will be reused. For n = nSMT + 1, the additional slice is always
used for the kernel.

When n > (nSMT + 1), SMTCache chooses the slice to be evicted with a
modified LRU algorithm. Domains scheduled often are therefore likely to keep
their data in an inactive slice while they are descheduled, ready to resume work
when they are scheduled again (see Section 6.2).

Figure 2 shows an example of our modified LRU for 4 slices and SMT-2.
A thread is moved to the MRU position the moment it is newly scheduled on
the core. Because the process scheduling is always performed by the kernel (K)
it can always only be at the most or second-most recently used position. This
ensure that the slice of the kernel is “reserved” and never evicted, guarantee-
ing fast kernel entries when there are more slices than SMT ways. We modify
standard LRU such that active threads can never have their slice taken from
them, regardless of their LRU position. Additionally, swapped-out threads are
placed in the second-most recent position. This prevents long-running threads
from immediately being the new eviction candidate (see switch from B to D or C
to F in Figure 2). For a configuration of 5 slices, this means that 4 slices will be
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Fig. 3: A read request can be satisfied by the same slice (left), by the L2 (middle),
and by a sibling slice (right). Hits on clean lines in sibling core are served from upper
levels to prevent side-channel leakage.

available for user space domains. If the kernel is scheduled on both SMT threads
at the same time, they share one cache slice similar to normal CPUs where both
SMT threads share the L1 cache.

3.3 SMTCache Controller and Coherence

Multi-core processing with several simultaneously executing threads and shared,
writeable memory requires caches to implement a coherence protocol that en-
sures all threads work with consistent copies of modified data. Information about
changes to a location in one cache is propagated to other caches as soon as pos-
sible. SMTCache includes an extra coherency controller that facilitates security-
aware snooping for the L1 slices (see Figure 1) to support shared memory, stay
coherent between threads and processes, and curb high lookup latency for write-
able shared memory. It handles misses from currently active L1 caches and re-
quests from higher cache levels.

The snooping protocol works like the standard coherence between L1I and
L1D caches. It avoids moving the attack surface from the L1 cache slice one
layer higher to a directory [59], as there are no evictions from underprovisioning.
Contrary to caches on different cores, the slices are also in much closer physical
proximity, which reduces the cost of snooping. To reduce the energy costs of
querying all slices for data, we propose a dual-mode line lookup for each cache
line’s tag and state data. When answering a request from the local core, only the
currently active slice’s set is searched, and tag, state, and data can be loaded
in parallel. In response to a sibling-slice or remote miss, tag and state infor-
mation from all slices is requested in parallel, without loading cache line data
simultaneously.

Requests from the core first go to the assigned slice, then, for a miss, are
forwarded to other slices and L2 cache at the same time (Figure 3). The cache
controller can also aggregate cache line states w.r.t. upper levels, it can distin-
guish between a total miss in SMTCache and a hit on a clean or dirty line in a
sibling slice. When a miss occurs in the controller, the request is served from the
L2 cache. Likewise, when the data is found but is clean, the request is still served
from the L2 cache to prevent Flush+Reload (see Section 5). When a sibling slice
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Table 1: Area and power overheads estimated with McPAT [26] and CACTI [37].

Number of Ways 8-way 12-way 16-way
2 slices
(8-way)

24-way
3 slices
(8-way)

32-way
4 slices
(8-way)

40-way
5 slices
(8-way)

Total L1 Cache Size 32KiB 48KiB 64KiB 64KiB 96KiB 96KiB 128KiB 128KiB 160KiB 160KiB

Number of SMT Cores
†

1 1 2 2 2 2 4 4 4 4

Bus Area [mm
2
] 0.37 0.37 0.38 0.38 0.39 0.40 0.41 0.42 0.53 0.54

Bus Peak Dynamic [W] 2.04 2.08 2.11 2.13 2.15 2.13 2.27 2.14 2.41 2.45
Bus Subthreshold Leakage [W] 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Bus Runtime Dynamic [W] 2.04 2.08 2.11 2.13 2.15 2.13 2.27 2.14 2.41 2.45

L1 Dynamic read energy [nJ] 2.53 6.87 11.22 2.53 29.16 2.53 47.09 2.53 81.55 2.53
L1 Dynamic write energy [nJ] 2.58 7.01 11.45 2.58 29.73 2.58 48.01 2.58 82.72 2.58

L1 Standby Leakage [mW] 42.50 64.41 86.33 85.83 132.47 127.49 178.61 169.98 276.95 212.48

L1 Area [mm
2
] 3.77 9.26 14.75 7.63 36.52 11.32 58.30 15.10 100.54 18.87

L1 Max. Total Leak. (2 loads+stores/cycle) [W] 10.26 27.84 45.42 10.30 117.90 10.34 190.38 10.38 328.83 10.43
L1 Max. Total Leak. (4 loads+stores/cycle) [W] - - 90.77 20.52 235.70 20.56 380.63 20.60 657.47 20.64
L1 Max. Total Leak. (8 loads+stores/cycle) [W] - - - - - - 761.04 41.02 1314.59 41.07

†
For a fair comparison, we adjusted the number of SMT cores to reflect the L1 cache sizes: 1 SMT core below 64KiB, 2 SMT cores for the

64KiB to 96KiB range, and 4 SMT cores above. We simulate the results for 3 different configurations for the load and store ports from 2
to 8 loads and store per cycle. The maximum total leakage significantly changes with the number of SMT cores and the number of loads
and stores per cycle. As the slices of SMTCache act as independent caches, they scale almost linearly in the maximum total leakage.

contains the requested data and it is dirty, it can be served directly from there
with limited security concerns. Since the position of the line is already known
from the lookup request, the corresponding set does not need to be searched
again, saving time and energy.

The slices together with the controller also keep track of copies and only
forward modified data when the last copy is evicted or a coherence message
from the upper level requires it. This avoids generating unnecessary traffic up
the hierarchy when a line is evicted from one slice but still present in others.
From a top-down view, SMTCache presents as a standard cache controller within
the larger coherency protocol while maintaining its own internal state. Upon a
request from a remote core, the controller can locate the address in the slices
and adjust the cache lines accordingly, i.e., changing ownership, responding with
data, or flushing lines. Again, finding an address via the first broadcast already
includes the location in the slice’s set, so an extra lookup is unnecessary.

4 Energy and Area Estimation

Estimating energy and area overheads for commercial large-scale CPUs is dif-
ficult as CPU vendors do not open-source competitive state-of-the-art designs.
Therefore, we follow the methodology of prior work [43,52] and use McPAT [26]
with CACTI [37] to estimate energy and area overheads, close to the actual
hardware costs for commercial large-scale CPUs [26]. Like Townley et al. [52],
we use the most recent Intel Xeon that McPAT supports. For the cache, we
configure CACTI [37] directly, providing more fine-grained configuration and
detailed information. The slices of SMTCache behave like separate caches that
each contribute to the static power consumption of the CPU. We interpolate
unsupported non-power-of-two values.
Area. The main area overhead of SMTCache is storage area, closely resembling
that of L1 caches in recent Apple CPUs. An increase from 32KiB to a 128KiB
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cache (like Apple’s) comes with a proportional area growth of factor 4. The bus
area increase is entirely negligible compared to the storage. SMTCache has a
about 1% area overhead from a basic 8-way cache due to additional complex-
ity and tag bits added. However, SMTCache scales much better than a naive
extension of current cache designs with a higher number of ways.
Energy. The dynamic read and write energy for a single operation (2.53 nJ and
2.58 nJ respectively) stays at the level of the initial cache design (see Table 1).
While standby leakage increases significantly it is negligible compared to overall
power consumption. For the maximum total leakage, we use the metrics of a
current CPU, i.e., a throughput of 0.5 cache reads and writes per cycle. On a
CPU with a 4 cycle cache latency, two load and two store ports, and 4GHz clock,
the upper bound for the throughput is 2 billion cache reads and cache writes
each per second, which we also empirically tested on an Intel i7-8565U CPU.

For a fair comparison across all designs, we compute the maximum total
leakage for 1 SMT core for all caches with less than 64KiB, 2 SMT cores for all
caches from 64KiB to 96KiB, and 4 SMT cores for 128KiB or more. As SMT
Cache slices act as entirely separate L1 caches, their energy consumption only
increases linearly with the number of slices. The two slice variant of SMTCache
has twice as much maximum total leakage, as both caches can be fully utilized
by the two SMT threads. However, even at this point the maximum total leakage
is lower than the 12-way L1 cache without SMT and significantly lower than the
16-way L1 cache with two SMT threads. This trend continues for the 96KiB
to 160KiB caches. The energy costs for the 40-way L1 cache are particularly
prohibitive, whereas SMTCache with SMT-4 support stays below the maximum
total leakage of the 16-way L1 cache.

5 Security

SMTCache provides strong isolation guarantees for the L1 cache. Therefore,
we discuss how different cache contention and cache utilization channels are
mitigated by our design. However, equally importantly, we show how SMTCache
is a defense-in-depth against data leakage attacks.
Data Leakage (Defense in Depth). The strict separation of L1 slices ensures
that the L1 cache can no longer be a source for leakage of data at rest, such as
Meltdown [29,49] and L1TF [49,54,56]. As requests from one domain are never
directly routed to the slice of a different domain, the active L1 slice can never
respond with data outside its domain. The request to other domains is only is-
sued with the request to the L2, which happens after the permission check on
Meltdown-affected hardware. Though orthogonal to SMTCache, a similar sepa-
ration (or static partitioning) of the line fill buffer (LFB) could be implemented
to additionally prevent leaking data in use, as seen in several microarchitectural
data sampling (MDS) attacks [8,45,47]. Though these vulnerabilities have been
mitigated in current CPU generations, designs with clear isolation boundaries
provide defense in depth against possible future leakage from similar sources. We
conclude that had these processors already followed a design like SMTCache,
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Meltdown [29, 49] and L1TF [49, 54, 56] would have had very little security im-
pact.

Kernel Domain. As mentioned in Section 3.1, the kernel shares a single do-
main. This is in line with standard process isolation but leaves open the possibil-
ity of (transient) confused deputy attacks. We weigh this against the significant
overhead of providing each process with a separate kernel slice. We consider this
an acceptable tradeoff, primarily because confused deputy attacks in the case of
SMTCache require both a disclosure gadget in the victim’s kernel code and a
leakage gadget in the attacker’s. Additionally, this attack surface is known, and
gadgets have been systematically reduced in recent years.

OpenSSL AES. The AES T-Table implementation in OpenSSL is often con-
sidered as a benchmark for side channels. The typically page-aligned block of T-
Tables (Te and Td) is accessed during the encryption, e.g., in the first round with
a byte-wise xor of plaintext and key. With SMTCache, the initial prefetch256
call loads the tables into the L1 cache, i.e., they are placed in separate slices of
SMTCache. Consequently, we cannot observe any contention.

mbedTLS RSA. Another side-channel attack commonly used as a benchmark
is the mbedTLS RSA implementation. mbedTLS uses a windowed square-and-
multiply implementation. However, prior attacks [32,48] exploited that a window
size of 1 results in a simple square-and-multiply where the buffer containing
the exponent is used in different ways, allowing to observe different contention
patterns With SMTCache, the buffer is first loaded into the L1 cache, i.e., again
in separate slices of SMTCache where we cannot observe any contention.

Generic Side Channels. In general, Prime+Probe builds on the foundational
assumption that an attacker can find the set that the victim process’ targeted
address is cached in and interact with it. Specifically, the Prime step fills the
entire set, thereby evicting the victim cache line. The Probe step then measures
how many of the attacker’s own addresses are still cached after the victim has
executed some code. If an address has been replaced, the attacker infers that,
with some likelihood, an address from the victim was loaded. SMTCache cuts
this primitive off at the root, as two different security domains cannot interact
with each other’s cache line allocation anymore. As the sets are separated in
both the slice and the L1 directory, the victim’s set contents are unaffected by
Prime+Probe or other attacks that manipulate the replacement algorithm.

Flush+Reload and Flush+Flush rely on shared memory between victim and
attacker. However, with SMTCache, sibling slices do not respond to requests for
unmodified data (see Figure 3 middle). Thus, neither Flush+Reload nor Flush+
Flush on unmodified data are possible on SMTCache.

Cache side channels on writeable shared memory are still possible. However,
this is a special case that was not handled by prior work on secure last-level
caches either, as writeable shared memory already requires trust between victim
and attacker for these shared memory regions. Hence, we also conclude that
given the lack of a plausible threat model it is no case that SMTCache should
cover.
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(b) SMT = 2, slices = 3, streams = 4
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(c) SMT = 4, slices = 5, streams = 4
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(d) SMT = 4, slices = 5, streams = 6

Fig. 4: Average simulator hit ratios over SPEC-speed 2017 benchmark combinations
of different L1D cache configurations compared to a standard 32KiB cache. Each dat-
apoint represents the average hitrate of that benchmark measured in all combinations
with other benchmarks. Base hit ratios are around 90-99%. Benchmarks sorted by as-
cending SMTCache hit ratio.

6 Performance Evaluation

As gem5 lacks SMT support, we cannot use it to test SMTCache performance,
as its benefits only materialize with SMT. Instead, we evaluate performance in
CacheSim [15] and on an Intel CPU, both with SMT, using the SPEC bench-
mark. We evaluate real-world single-threaded and SMT switching behaviour on
Linux server workloads over several hours, resulting in data for SMTCache per-
formance estimates for different numbers of slices.

6.1 CacheSim Hit Ratio Simulation

We use CacheSim [15] to evaluate hit ratios in SMTCache in different SMT
configurations and two levels of cache. Like prior work [11, 14, 57], we use a
representative sample of 250 million instructions from SPECspeed CPU 2017
benchmarks. We use a standard 8way, 32KiB L1 instruction cache, combined
with the different L1 data caches we evaluate.

SMT workloads are simulated by interleaving memory accesses of the cur-
rently active workloads. We test all 153 pairwise combinations (with repetition)
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of 17 SPEC workloads. To fill up to 8 SMT threads, we use multiples of the
pairs to create up to 8 workload streams and avoid an explosion of simulation
time. We shift the recorded addresses of streams such that no two workloads
share memory addresses. To simulate context switches by the operating system,
threads change their workload in regular intervals of 3 000 000 accesses, which
roughly equals 500Hz on a 3GHz machine, assuming 2 memory accesses per
cycle. Between each switch, the implementation of SMTCache briefly loads a
fictitious kernel domain. In addition to context switches, we also add the option
to simulate a number of syscalls in every context switch interval, e.g., 5 syscalls
for every context switch. A syscall here is simulated simply by loading the kernel
domain and switching back to the last workload.

We examine the hit ratio of these combinations in Figures 4 to 5. In Figure 4,
we plot the averages for each benchmark combination. We simulate configura-
tions where the number of workloads is equal or higher than the number of
slices. This shows an ideal and non-ideal case for SMTCache. SMTCache per-
forms about on par with a standard cache of equivalent size to the maximum
active number of slices, i.e., the number of SMT ways. We only see a significant
deviation for the benchmark combinations that include bwaves (and, to a minor
extent, xz ), as this workload seems to use a particularly large working set. The
example of bwaves also demonstrates the thrashing resistance of SMTCache, as
thrashing can only spill over to the second thread via evictions caused by in-
clusivity in higher caches. The combination of 2 bwaves workloads (Figure 4a)
produces a 1.73 pp higher hit ratio on SMTCache than a standard cache on
SMT-2 with 3 slices, compared to 1.98 pp for the 128KiB standard cache with
twice the concurrently available cache memory. This becomes even more pro-
nounced for SMT-4 (Figure 4c) with hit ratio increases of 12.78 pp vs 2.64 pp
for SMTCache (5 slices) vs. a 128KiB cache.

Figure 5 reinforces the result that thrashing resistance becomes increasingly
more pronounced with more logical cores. In this graph, the size of SMTCache
increases with the number of SMT ways. While SMTCache starts with hit ratios
very similar to the standard cache with the corresponding size, we can see that
the hit ratio of standard caches quickly drop as the 8 workloads start to interfere
more and more, while SMTCache remains somewhat static.

As Figure 6 shows, the increase in hit ratio for each extra slice beyond SMT+
1 is fairly small, compared to the benefit from increasing the effective cache size.
This coincides with our observations in other benchmarks (cf. Section 6.2) that
returning to an empty cache is not a significant cost when the uninterrupted
runtime is significantly larger than the time it takes to refill the cache. The
overhead of the full-flush mitigation is mostly small, but some applications see
a significant loss in performance [25]. In our tests, when we add a number of
simulated syscalls per context switch similar to what we find in Section 6.2, we
see that the gap from 2 to 3 slices grows slightly. Specifically, this occurs when the
number of slices is not higher than the number of SMT ways, as then each syscall
results in a full cache eviction. For example, in the depicted configuration with 2
slices, 6 workloads and SMT-2, we see the average hit ratio drop from 94.16 pp
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Fig. 5: Mean simulator hit ratio over
SPEC combinations for different num-
ber of slices with standard designs for
reference. 1,2,4,8-way SMT. 8 workloads.
n = nSMT + 1 for SMTCache.
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Fig. 6: Mean simulator hit ratio over
SPEC combinations for different number
of slices with different numbers of syscalls
per context switch. Standard designs for
reference. SMT-2, 6 workloads.

to 93.50 pp when we increase number of syscalls per context switch from 0 to
10. Therefore, the number of slices in our proposed default configuration of SMT
Cache is the number of SMT ways + 1. This ensures that applications always
return to a full cache from a syscall.
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Fig. 7: Measured hit ratios from conventional cache architecture compared to expected
hit ratios for different numbers of slices in SMTCache. SMT-2.

6.2 Server Context-Switch Evaluation

We analyze real-world switching behavior with SMT-2 by running several server
workloads in different configurations on a native Linux system and simulate the
impact of our design. We use the applications proposed by prior work ( [19,58])
to evaluate the performance of SMTCache in a realistic cloud scenario. These
benchmarks include the following server applications combined in pairs of two
to form our server workloads: Apache Tomcat (application server), MySQL (DB
server), Postfix (mail server), Samba (file server), FFserver (streaming), and
Apache (http server). We run all experiments on an Intel i7-6700K CPU with
4 cores and SMT. We isolate one physical core to eliminate interference from
unrelated tasks and execute the workloads on the two SMT cores.
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We modify a Linux v5.13 Kernel to record all context switches and syscalls
with tracepoints in the context switch and do syscall 64 functions. In ad-
dition to information about the current and next process, we also record L1D
performance counters of hit ratios for all applications. The context switching
and syscall information now lets us simulate LRU replacement for varying num-
bers of slices for each application in different workload combinations. The EER
indicates how often a process receives a cleared cache upon being scheduled. A
higher number of slices results in a lower EER. With the performance coun-
ters, we create two L1 cache hit ratio baselines for each server application on
an isolated core. The first baseline is standard switching without flushing, yield-
ing the highest possible hit ratio for each application (HRhigh). For the second
baseline, we evict the cache in every context switch and syscall, producing each
application’s lowest possible hit ratio (HRlow). We assume that the hit ratio
decreases linearly from an EER of 0% (HRhigh) to an EER of 100% (HRlow),
that a process with a dedicated cache performs roughly the same as a process
running on an isolated core, and that kernel threads only interfere minimally on
isolated cores. Based on these assumptions, a process receiving a cleared cache
each time it is scheduled (EER 100%) has the hit ratio of the process operat-
ing on a dedicated core, where the cache is flushed at every context switch and
syscall (HRlow) and vice versa (EER 0%, HRhigh).

For the evaluation, we record the application’s L1 hit ratios, context switches,
and syscalls in all workload combinations. We use the information about context
switches and syscalls to compute the EER for each application and varying
numbers of slices. We then use the EER values to interpolate between the hit
ratio baselines. This yields the expected hit ratios of each application in a SMT
Cache architecture with different numbers of slices.

Figure 7 shows the expected hit ratios for all workload combinations with
different numbers of slices. The leftmost values represent the measured hit ratios
for each application in all workload combinations in a conventional cache archi-
tecture. The other values are the expected hit ratios for the respective number
of slices in a SMTCache architecture. The grey lines represent specific workload
combinations. The colored lines show the average hit ratio for each application.
Our evaluation shows an expected performance improvement for SMT workloads
when there are SMT ways + 1 slices compared to the measured value in a con-
ventional cache architecture. We observe a decrease in performance when using
as many slices as SMT ways in most workload combinations. The cause for this
expected performance decrease roots in syscalls. Since syscalls constantly refresh
the kernel to be the most recently used cache domain, only one slice is left for
parallel tasks. Table 2 shows that, on average, between 4 and 46 syscalls occur
during a scheduled period, depending on the application.

Figure 8 depicts each server application’s average expected eviction ratios in
a SMTCache architecture for different numbers of slices. We see a high eviction
ratio when using as many slices as SMT ways. For some workloads, the computed
eviction ratio is almost 100% when using 2 slices on our machine with 2 SMT
ways. Moreover, we see that using more than SMT ways + 1 slices brings almost
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Table 2: Comparison of measured syscall and scheduling metrics.

App DB File Mail Stream Web

Syscalls per scheduled period 6.86 4.84 10.56 10.98 46.34 4.12
Avg. scheduled period (ms) 0.033 0.088 0.066 0.298 9.843 0.028
Avg. time to context switch or syscall (ms) 0.004 0.015 0.006 0.025 0.208 0.005
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Fig. 8: Expected eviction ratios computed from context switch and syscall information
for different numbers of slices. SMT-2.

no performance improvement, given that the eviction ratio is already almost as
low as 0% for 3 slices for all applications.

The average time for a full L1D cache flush in our applications is 3836 cycles
(2332 cycles to 10 272 cycles, median 2401 cycles). We flush the L1D cache upon
every syscall and context switch to record this value. We observe a higher du-
ration of 10 272 cycles for the stream testcase compared to the other server ap-
plications. The average L1D flush duration correlates with the average time
between syscalls and context switches for each application. The stream testcase
runs uninterrupted for 0.208ms between syscalls and context switches on average
(Table 2), allowing a longer time for data to be written to the L1D cache. As all
dirty cache lines are flushed to higher cache levels, the L1D cache flush duration
increases with the number of writes.

To confirm these L1 flush delays, we also micro-benchmark the full-cache-
flush duration in gem5. The results show 350 writebacks on average taking an
average of 1700 cycles, comparable to our real-world results.

7 Related and Future Work

Many secure cache designs have been proposed to curb these attacks. We can
divide these designs into two groups: designs based on randomization and on par-
titioning. The former tries to obscure access patterns by making them seemingly
random to an attacker, while the latter tries to make accesses unobservable.
Many designs require complex functions whose latency is too large for imple-
mentation in an L1 cache or simply target the LLC because they assume the
underlying caches are secured in a different way. These designs therefore only
target the LLC [10,14,30,40–43,51–53,57].
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While prior partition-based designs may be applicable to the L1, they have
so far come at a reduced cache utilization or available cache size. Only way-based
partitioning even has the option to increase cache size, though as examined in
Section 4, may come with increased energy needs. In this sense, SMTCache
achieves an orthogonal goal of offering security and an increase in the overall L1
size, which is complementary to the partition-based designs. We anticipate that
for a fully secure system memory subsystem, SMTCache will be combined with
one or more of the secure cache approaches for L2 and L3 caches.

Wang et al. [55] presented PLCache and RPCache. PLCache has the abil-
ity to lock critical cache lines dynamically in the cache. While less wasteful
than static partitioning, the programmer has to mark secrets. Instead, Random
Permutation Cache tries to prevent observable interference between cache lines
of different processes by randomizing their locations with a permutation ta-
ble. Both PLCache and RPCache have low-overhead implementations, though
Kong et al. [24] point out security-related shortcomings of both. Further ap-
proaches have been proposed that offer fine-grained specification of cache par-
titions, on a cache-line and cache bank granularity respectively [3, 44]. Still, all
these designs are size-limited, where SMTCache offers an orthogonal approach
to increase the overall L1 size.

Some works explored way-based partitioning [11,23] similar to Intel CAT [18,
20] with additional security by disabling cross-domain cache hits and moderate
performance costs. We believe that compared to our work, these way-split de-
signs could not benefit from power savings in the way SMTCache does because
of the dynamic nature of the designs. Hybcache [9] proposes selective cache par-
titioning that incurs only a low overhead and only for protected code. It does so
by combining random replacement with a small but fully-associative sub-set of
the cache for a trusted execution environment. Jumanji [50] partitions the L3
cache dynamically by splitting it into software-defined shares. Still, partitioning
reduces the effective cache size, which is unsuitable for the size-limited L1 cache.
Newcache [31] is a pseudo-fully-associative cache with random replacement, that
maps address and domain ID of a load to a possible random location in the cache,
at moderate performance, area, and energy costs.

TEE-SHirT [2] is a design with partitioned L3 caches and private L2 caches,
and non-partitioned private L1 caches. To secure the L1 cache, they simply
flush the cache on context switches, which is not overly expensive, given that
refills from L2 and L3 are possible. Ge et al. [13] estimated the overhead for
L1 flushing to be as low as 1% on the L4 kernel. However, benchmarks on the
Linux kernel showed a significantly higher cost of 10% [25] on commodity CPUs.
SMTCache complements TEE-SHirT from a security perspective while offering
better performance than L1 flushing. Similarly, for MI6 [6], SMTCache offers a
better alternative to simple L1 flushing.

Future Work. Our experiments have shown that while scaling the number
of slices with the number of SMT threads provides a performance boost very
similar to an equivalent increase in cache size, going beyond has quickly dimin-
ishing returns. The impact of context switches and syscalls, however, shows that
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an extra domain for the kernel is useful. An open question for future work is,
therefore, if a separate but smaller slice dedicated to the operating system would
be a good tradeoff between performance and chip area.

To maintain energy consumption on par with current designs, we assumed the
same bandwidth between the core and SMTCache as in standard caches. SMT
Cache supports twice that bandwidth for SMT-2. Future work could investigate
dynamic scaling of the amount of issued loads and stores by the core to optimally
fit power budgets and provide increased performance.

8 Conclusion

We proposed SMTCache, a secure L1D cache increasing cache size and thrash-
ing resistance while being energy efficient. SMTCache achieves strong domain
isolation, as security critical memory accesses from one domain are never served
from another. With CacheSim and a simulation based on traces from native
Linux benchmarks, we also showed that increasing the cache size with multi-
ple slices provides not only the performance boost from simply increasing the
cache size, but also from preventing interference between workloads. Lastly, our
CACTI power simulation revealed that SMTCache design is significantly more
energy-efficient than a traditional design of comparable size. We conclude that
the SMTCache design shows promising results in terms of security, performance,
and energy efficiency.
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A Implementation of SMTCache in gem5

To demonstrate the functionality of SMTCache we implemented it in gem5. At
the moment, the gem5 simulator does not support simultaneous multithreading
in full system mode. Therefore, we cannot use it to estimate full system-level per-
formance overheads for SMTCache, as it scales with simultaneous multithread-
ing. We still modelled the additional latencies caused by our design realistically,
allowing for micro-benchmarks of specific operations. Our implementation aims
to functionally represent the features of the design described in Section 3, while
working within the limitations of the gem5 codebase.
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A.1 Implementation Overview

The gem5 framework simulates a freely configurable set of CPU cores, caches,
crossbars (XBar), peripheral devices, etc. connected through ports on with each
other. To avoid a complete overhaul of the memory subsystem, our implemen-
tation works within the system as much as possible, only swapping the default
cache configuration with our SMTCache implementation.

Because all the SMTCache L1 slices behave like independent caches, we can
build SMTCache on top of the existing L1 cache implementation. More specif-
ically, we add functionality to perform a full cache flush (Appendix A.3). In a
typical CPU, the gem5 CPU core is directly connected to a L1 data cache. For
SMTCache, we instead add multiple L1 caches and connect all of them to the
CPU core through a custom SMTCache-XBar that implements the switch, as
shown in Figure 1. Additionally, this XBar also simulates the SMTCache coher-
ence behavior. The design of the XBar is described in detail in Appendix A.2.
The L2 cache in our system is shared between cores and the point of coher-
ence. Usually gem5 connects all L1 caches of all cores to the shared L2 cache
through the L2XBar. For SMTCache we do exactly the same, with all L1 data
slices of all cores connected to the L2XBar. Finally, we customize the move-
into-control-register instruction implementation (MOV C R) to inform our custom
SMTCache-XBar about a CR3 change.

A.2 SMTCache-XBar Coherence Controller

The CPU core communicates with its SMTCache-XBar by writing to a special
address, whenever the CR3 register is written. This communication is necessary
to allow the SMTCache-XBar to respond to a switch in the active domain. The
SMTCache-XBar implements the LRU slice eviction and causes a full flush of
all lines in the slice about to be assigned to a new domain.

Finally, the SMTCache-XBar also simulates the snooping coherence behavior.
In a real implementation, every memory access would go to the active L1 slice,
which may then forward the request to the controller if it is a miss. The controller
then forwards the request to a slice that contains the cache line if there is one, or
the L2 cache. In our gem5 implementation, the SMTCache-XBar directly checks
all connected L1 slices and forwards the request to the correct one, if appropriate
(i.e., the line is found in the current slice or is modified in a different slice). By
adding the correct latencies differentiating a cache hit vs a miss in the active
L1 slice, our implementation can simulate the correct overhead. For the tag-
matching in the slices, we budget one extra cycle. With this, we implement the
behavior of the SMTCache coherence controller without requiring a separate
component.

A.3 Flushing

Whenever a process without an associated slice is scheduled, the least recently
used cache slice must be flushed and write back dirty data into higher cache levels
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or the main memory. Because we only have to write back dirty data, the flush
latency is dependent on the number of dirty cache lines. Intel Skylake and later
CPUs have a bandwidth of 1 cache line per cycle between the L1 and L2 [34].
This gives a lower bound of 512 cycles for a full flush if every single line is dirty.
The flushing can take longer if, e.g., the L2 has to write data into the main
memory to make space for the flushed data from the L1 slice. We implement our
cache flushing to simulate this behavior and latency.

In gem5, caches can tell the CPU that they are blocked for various reasons.
We use this mechanism to block the cache while flushing, as this can take many
clock cycles. The CPU waits for the flushing to be finished, treating it as a fully
serializing operation. This is important to avoid speculative loads or stores to
the wrong slice during this step.
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45. van Schaik, S., Milburn, A., Österlund, S., Frigo, P., Maisuradze, G., Razavi, K.,
Bos, H., Giuffrida, C.: RIDL: Rogue In-flight Data Load. In: S&P (2019)

46. van Schaik, S., Minkin, M., Kwong, A., Genkin, D., Yarom, Y.: CacheOut: Leaking
Data on Intel CPUs via Cache Evictions. In: S&P (2021)

47. Schwarz, M., Lipp, M., Moghimi, D., Van Bulck, J., Stecklina, J., Prescher, T.,
Gruss, D.: ZombieLoad: Cross-Privilege-Boundary Data Sampling. In: CCS (2019)

48. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In: DIMVA (2017)

49. Schwarzl, M., Schuster, T., Schwarz, M., Gruss, D.: Speculative Dereferencing of
Registers: Reviving Foreshadow. In: FC (2021)

50. Schwedock, B.C., Beckmann, N.: Jumanji: The Case for Dynamic NUCA in the
Datacenter. In: MICRO (2020)

51. Tan, Q., Zeng, Z., Bu, K., Ren, K.: PhantomCache: Obfuscating Cache Conflicts
with Localized Randomization. In: NDSS (2020)

https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf
https://en.wikichip.org/w/images/8/8f/Technology_Insight_Intel%E2%80%99s_Next_Generation_Microarchitecture_Code_Name_Skylake.pdf


22 Giner et al.

52. Townley, D., Arıkan, K., Liu, Y.D., Ponomarev, D., Ergin, O.: Composable
Cachelets: Protecting Enclaves from Cache {Side-Channel} Attacks. In: USENIX
Security. pp. 2839–2856 (2022)

53. Unterluggauer, T., Harris, A., Constable, S., Liu, F., Rozas, C.: Chameleon Cache:
Approximating Fully Associative Caches with Random Replacement to Prevent
Contention-Based Cache Attacks. In: SEED (2022)

54. Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Silber-
stein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the Keys
to the Intel SGX Kingdom with Transient Out-of-Order Execution. In: USENIX
Security (2018)

55. Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side
channel attacks. ACM SIGARCH Computer Architecture News 35(2), 494 (2007)

56. Weisse, O., Van Bulck, J., Minkin, M., Genkin, D., Kasikci, B., Piessens, F., Sil-
berstein, M., Strackx, R., Wenisch, T.F., Yarom, Y.: Foreshadow-NG: Breaking
the Virtual Memory Abstraction with Transient Out-of-Order Execution (2018),
https://foreshadowattack.eu/

57. Werner, M., Unterluggauer, T., Giner, L., Schwarz, M., Gruss, D., Mangard,
S.: ScatterCache: Thwarting Cache Attacks via Cache Set Randomization. In:
USENIX Security (2019)

58. Wu, H., Liu, F., Lee, R.B.: Cloud Server Benchmark Suite for Evaluating New
Hardware Architectures. IEEE CAL 16(1), 14–17 (2017)

59. Yan, M., Sprabery, R., Gopireddy, B., Fletcher, C., Campbell, R., Torrellas, J.:
Attack directories, not caches: Side channel attacks in a non-inclusive world. In:
S&P (2019)

60. Yarom, Y., Falkner, K.: Flush+Reload: a High Resolution, Low Noise, L3 Cache
Side-Channel Attack. In: USENIX Security (2014)

https://foreshadowattack.eu/

	Fast and Efficient Secure L1 Caches for SMT

